INTERNATIONAL STANDARD

ISO 2859-1

> Second edition 1999-11-15

Sampling procedures for inspection by attributes —

Part 1:

Sampling schemes indexed by acceptance quality limit (AQL) for lot-by-lot inspection

Règles d'échantillonnage pour les contrôles par attributs —

Partie 1: Procédures d'échantillonnage pour les contrôles lot par lot, indexés d'après le niveau de qualité acceptable (NQA)

ISO 2859-1:1999(E)

Contents

1 Scope	1
2 Normative references	2
3 Terms, definitions and symbols	2
4 Expression of nonconformity	7
5 Acceptance quality limit (AQL)	8
6 Submission of product for sampling	8
7 Acceptance and non-acceptance	9
8 Drawing of samples	9
9 Normal, tightened and reduced inspection	10
10 Sampling plans	13
11 Determination of acceptability	14
12 Further information	14
13 Fractional acceptance number plans for single sampling (optional)	16
Tables	
1 Sample size code letters	19
2-A Single sampling plans for normal inspection (Master table)	20
2-B Single sampling plans for tightened inspection (Master table)	21
2-C Single sampling plans for reduced inspection (Master table)	22
3-A Double sampling plans for normal inspection (Master table)	23
3-B Double sampling plans for tightened inspection (Master table)	24
3-C Double sampling plans for reduced inspection (Master table)	25
4-A Multiple sampling plans for normal inspection (Master table)	26
4-B Multiple sampling plans for tightened inspection (Master table)	29

© ISO 1999

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Organization for Standardization Case postale 56 • CH-1211 Genève 20 • Switzerland Internet iso@iso.ch

Printed in Switzerland

4-C Multiple sampling plans for reduced inspection (Master table)	32
5-A Producer's risk for normal inspection	35
5-B Producer's risk for tightened inspection	36
5-C Producer's risk for reduced inspection	37
6-A Consumer's risk quality for normal inspection	38
6-B Consumer's risk quality for tightened inspection	39
6-C Consumer's risk quality for reduced inspection	40
7-A Consumer's risk quality for normal inspection	41
7-B Consumer's risk quality for tightened inspection	42
7-C Consumer's risk quality for reduced inspection	43
8-A Average outgoing quality limits for normal inspection (Single sampling plans).	44
8-B Average outgoing quality limits for tightened inspection (Single sampling plan	s)45
9 Average sample size curves for single, double and multiple sampling (normal, tiginspection)	
10-A Tables for sample size code letter A (Individual plans)	48
10-B Tables for sample size code letter B (Individual plans)	50
10-C Tables for sample size code letter C (Individual plans)	52
10-D Tables for sample size code letter D (Individual plans)	54
10-E Tables for sample size code letter E (Individual plans)	56
10-F Tables for sample size code letter F (Individual plans)	58
10-G Tables for sample size code letter G (Individual plans)	60
10-H Tables for sample size code letter H (Individual plans)	62
10-J Tables for sample size code letter J (Individual plans)	64
10-K Tables for sample size code letter K (Individual plans)	66
10-L Tables for sample size code letter L (Individual plans)	68
10-M Tables for sample size code letter M (Individual plans)	70
10-N Tables for sample size code letter N (Individual plans)	72
10-P Tables for sample size code letter P (Individual plans)	74
10-Q Tables for sample size code letter Q (Individual plans)	76
10-R Tables for sample size code letter R (Individual plans)	78
10-S Tables for sample size code letter S (Individual plans)	80

11-A Single sampling plans for normal inspection (Auxiliary master table)	81
11-B Single sampling plans for tightened inspection (Auxiliary master table)	82
11-C Single sampling plans for reduced inspection (Auxiliary master table)	83
12 Scheme OC curves (Normalized)	84
Annex A (informative) Example for non-constant sampling plan	85
Ribliography	97

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

International Standard ISO 2859-1 was prepared by Technical Committee ISO/TC 69, *Applications of statistical methods*, Subcommittee SC 5, *Acceptance sampling*.

This second edition of ISO 2859-1 cancels and replaces the first edition (ISO 2859-1:1989) of which it constitutes a technical revision.

Significant changes in this edition include:

- a new procedure for switching from normal to reduced inspection;
- a reference to skip-lot sampling as an alternative to reduced inspection;
- the term "limiting quality" has been changed to "consumer's risk quality" in the heading of Tables 6-A, 6-B, 6-C, 7-A, 7-B and 7-C;
 - a new table has been added giving producer's risk as the probability of rejection of lots with percent nonconforming equal to the AQL;
 - optional fractional acceptance number plans have been added; the purpose of these plans is to provide a consistent progression from the plans for acceptance number zero to the acceptance number 1 plans. The fractional acceptance number plans are found in Tables 11-A, 11-B and 11-C, where they take the place of the arrows in the corresponding positions in tables 2-A, 2-B and 2-C;
- reduced plans have been changed to eliminate the gap between the acceptance and rejection numbers;
- some changes have been made to the double sampling plans to provide a smaller average sample size;
- multiple sampling plans have been changed to five stages rather than seven. The change has not increased
 the average sample size. Some of the new plans have a smaller average sample size than their counterparts in
 the previous edition;
- scheme operating characteristic curves have been added as Table 12.

ISO 2859 consists of the following parts, under the general title Sampling procedures for inspection by attributes:

- Part 0: Introduction to the ISO 2859 attribute sampling system
- Part 1: Sampling schemes indexed by acceptance quality limit (AQL) for lot-by-lot inspection
- Part 2: Sampling plans indexed by limiting quality (LQ) for isolated lot inspection

— Part 3: Skip-lot sampling procedures

It is highly recommended that this part of ISO 2859 be used together with ISO 2859-0, which contains illustrative examples.

Annex A of this part of ISO 2859 is for information only.

Sampling procedures for inspection by attributes —

Part 1:

Sampling schemes indexed by acceptance quality limit (AQL) for lot-by-lot inspection

1 Scope

1.1 This part of ISO 2859 specifies an acceptance sampling system for inspection by attributes. It is indexed in terms of the acceptance quality limit (AQL).

Its purpose is to induce a supplier through the economic and psychological pressure of lot non-acceptance to maintain a process average at least as good as the specified acceptance quality limit, while at the same time providing an upper limit for the risk to the consumer of accepting the occasional poor lot.

Sampling schemes designated in this part of ISO 2859 are applicable, but not limited, to inspection of

	items,

- components and raw materials,
- operations,
- materials in process,
- supplies in storage,
- maintenance operations,
- data or records, and
- administrative procedures.
- **1.2** These schemes are intended primarily to be used for a continuing series of lots, that is, a series long enough to allow the switching rules (9.3) to be applied. These rules provide:
- a) a protection to the consumer (by means of a switch to tightened inspection or discontinuation of sampling inspection) should a deterioration in quality be detected;
- b) an incentive (at the discretion of the responsible authority) to reduce inspection costs (by means of a switch to reduced inspection) should consistently good quality be achieved.

Sampling plans in this part of ISO 2859 may also be used for the inspection of lots in isolation but, in this case the user is strongly advised to consult the operating characteristic curves to find a plan that will yield the desired protection (see 12.6). In that case, the user is also referred to the sampling plans indexed by limiting quality (LQ) given in ISO 2859-2.

2 Normative references

The following normative documents contain provisions which, through reference in this text, constitute provisions of this part of ISO 2859. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply. However, parties to agreements based on this part of ISO 2859 are encouraged to investigate the possibility of applying the most recent editions of the normative documents indicated below. For undated references, the latest edition of the normative document referred to applies. Members of ISO and IEC maintain registers of currently valid International Standards.

ISO 2859-3:1991, Sampling procedures for inspection by attributes — Part 3: Skip-lot sampling procedures.

ISO 3534-1:1993, Statistics — Vocabulary and symbols — Part 1: Probability and general statistical terms.

ISO 3534-2:1993, Statistics — Vocabulary and symbols — Part 2: Statistical quality control.

3 Terms, definitions and symbols

3.1 Terms and definitions

For the purposes of this part of ISO 2859, the terms and definitions given in ISO 3534-1 and ISO 3534-2 and the following apply.

For ease of reference, the definitions of some of these terms are quoted from ISO 3534-1 and ISO 3534-2, while others are redefined or newly defined.

3.1.1

inspection

activity such as measuring, examining, testing or gauging one or more characteristics of a product or service, and comparing the results with specified requirements in order to establish whether conformity is achieved for each characteristic

3.1.2

original inspection

first inspection of a lot according to the provisions of this part of ISO 2859

NOTE This is to be distinguished from the inspection of a lot which has been resubmitted after previous non-acceptance.

3.1.3

inspection by attributes

inspection whereby either the item is classified simply as conforming or nonconforming with respect to a specified requirement or set of specified requirements, or the number of nonconformities in the item is counted

NOTE Inspection by attributes includes inspection for conformity of items as well as inspection for number of nonconformities per hundred items.

3.1.4

item

that which can be individually described and considered

EXAMPLES

- a physical item;
- a defined quantity of material;
- a service, an activity or a process;
- an organization or a person; or
- some combination thereof.

3.1.5

nonconformity

non-fulfilment of a specified requirement

NOTE 1 In some situations specified requirements coincide with customer usage requirements (see **defect**, 3.1.6). In other situations they may not coincide, being either more or less stringent, or the exact relationship between the two is not fully known or understood.

NOTE 2 Nonconformity will generally be classified according to its degree of seriousness such as:

Class A: those nonconformities of a type considered to be of the highest concern; in acceptance sampling such types of nonconformities will be assigned a very small acceptance quality limit value;

Class B: those nonconformities of a type considered to have the next lower degree of concern; therefore, these can be assigned a larger acceptance quality limit value than those in class A and smaller than in class C, if a third class exists, etc.

NOTE 3 Adding characteristics and classes of nonconformities will generally affect the overall probability of acceptance of the product.

NOTE 4 The number of classes, the assignment into a class, and the choice of acceptance quality limit for each class, should be appropriate to the quality requirements of the specific situation.

3.1.6

defect

non-fulfilment of an intended usage requirement

NOTE 1 The term "defect" is appropriate for use when a quality characteristic of a product or service is evaluated in terms of usage (as contrasted to conformance to specifications).

NOTE 2 Since the term "defect" now has definite meaning within the law, it should not be used as a general term.

3.1.7

nonconforming item

item with one or more nonconformities

NOTE Nonconforming items will generally be classified by their degree of seriousness such as:

Class A: an item which contains one or more nonconformities of class A and may also contain nonconformities of class B and/or class C, etc.;

Class B: an item which contains one or more nonconformities of class B and may also contain nonconformities of class C, etc. but contains no nonconformity of class A.

3.1.8

percent nonconforming

(in a sample) one hundred times the number of nonconforming items in the sample divided by the sample size, viz:

$$\frac{d}{n}$$
×100

where

d is the number of nonconforming items in the sample;

n is the sample size

3.1.9

percent nonconforming

(in a population or lot) one hundred times the number of nonconforming items in the population or lot divided by the population or lot size, viz:

$$100p = 100 \frac{D}{N}$$

where

is the proportion of nonconforming items; p

is the number of nonconforming items in the population or lot; D

is the population or lot size N

In this part of ISO 2859 the terms percent nonconforming (3.1.8 and 3.1.9) or nonconformities per 100 items (3.1.10 and 3.1.11) are mainly used in place of the theoretical terms "proportion of nonconforming items" and "nonconformities per item" because the former terms are the most widely used.

This definition differs from that found in ISO 3534-2. NOTE 2

3.1.10

nonconformities per 100 items

(in a sample) one hundred times the number of nonconformities in the sample divided by the sample size, viz:

$$100\frac{d}{n}$$

where

d is the number of nonconformities in the sample;

is the sample size n

nonconformities per 100 items

(in a population or lot) one hundred times the number of nonconformities in the population or lot divided by the population or lot size, viz:

$$100p = 100\frac{D}{N}$$

where

is the number of nonconformities per item; p

D is the number of nonconformities in the population or lot;

is the population or lot size N

NOTE An item may contain one or more nonconformities.

3.1.12

responsible authority

concept used to maintain the neutrality of this part of ISO 2859 (primarily for specification purposes), irrespective of whether it is being invoked or applied by the first, second or third party

NOTE 1 The responsible authority may be:

- the quality department within a supplier's organization (first party); a)
- the purchaser or procurement organization (second party); b)
- an independent verification or certification authority (third party); c)

d) any of a), b) or c), differing according to function (see Note 2) as described in a written agreement between two of the parties, for example a document between supplier and purchaser.

NOTE 2 The duties and functions of a responsible authority are outlined in this part of ISO 2859 (see 5.2, 6.2, 7.2, 7.3, 7.5, 7.6, 9.1, 9.3.3, 9.4, 10.1, 10.3, 13.1).

3.1.13

lot

definite amount of some product, material or service, collected together

NOTE An inspection lot may consist of several batches or parts of batches.

3.1.14

lot size

number of items in a lot

3.1.15

sample

set of one or more items taken from a lot and intended to provide information on the lot

3.1.16

sample size

number of items in the sample

3.1.17

sampling plan

combination of sample size(s) to be used and associated lot acceptability criteria

NOTE 1 A single sampling plan is a combination of sample size and acceptance and rejection numbers. A double sampling plan is a combination of two sample sizes and acceptance and rejection numbers for the first sample and for the combined sample.

NOTE 2 A sampling plan does not contain the rules on how to draw the sample.

NOTE 3 For the purposes of this part of ISO 2859, a distinction should be made between the terms **sampling plan** (3.1.17), **sampling scheme** (3.1.18) and **sampling system** (3.1.19).

3.1.18

sampling scheme

combination of sampling plans with rules for changing from one plan to another

NOTE See 9.3.

3.1.19

sampling system

collection of sampling plans, or of sampling schemes, each with its own rules for changing plans, together with sampling procedures including criteria by which appropriate plans or schemes may be chosen

NOTE This part of ISO 2859 is a sampling system indexed by lot-size ranges, inspection levels and AQLs. A sampling system for LQ plans is given in ISO 2859-2.

3.1.20

normal inspection

use of a **sampling plan** (3.1.17) with an acceptance criterion that has been devised to secure the producer a high probability of acceptance when the **process average** (3.1.25) of the lot is better than the **acceptance quality limit** (3.1.26)

NOTE Normal inspection is used when there is no reason to suspect that the **process average** (3.1.25) differs from an acceptable level.

3.1.21

tightened inspection

use of a sampling plan (3.1.17) with an acceptance criterion that is tighter than that for the corresponding plan for normal inspection (3.1.20)

NOTE Tightened inspection is invoked when the inspection results of a predetermined number of consecutive lots indicate that the **process average** (3.1.25) might be poorer than the **AQL** (3.1.26).

reduced inspection

use of a sampling plan (3.1.17) with a sample size (3.1.16) that is smaller than that for the corresponding plan for normal inspection (3.1.20) and with an acceptance criterion that is comparable to that for the corresponding plan for normal inspection

- NOTE 1 The discriminatory ability under reduced inspection is less than under normal inspection.
- Reduced inspection may be invoked when the inspection results of a predetermined number of consecutive lots indicate that the process average (3.1.25) is better than the AQL (3.1.26).

3.1.23

switching score

indicator that is used under normal inspection to determine whether the current inspection results are sufficient to allow for a switch to reduced inspection

NOTE See 9.3.3.

3.1.24

acceptance score

indicator that is used for fractional acceptance number plans to determine lot acceptability

NOTE See 13.2.1.2.

3.1.25

process average

process level averaged over a defined time period or quantity of production

[ISO 3534-2:1993, 3.1.2]

In this part of ISO 2859 the process average is the quality level (percent nonconforming or number of nonconformities per hundred items) during a period when the process is in a state of statistical control.

3.1.26

acceptance quality limit

quality level that is the worst tolerable process average when a continuing series of lots is submitted for acceptance sampling

- NOTE 1 This concept only applies when a sampling scheme with rules for switching and for discontinuation, such as in ISO 2859-1 or ISO 3951, is used.
- NOTE 2 Although individual lots with quality as bad as the acceptance quality limit may be accepted with fairly high probability, the designation of an acceptance quality limit does not suggest that this is a desirable quality level. Sampling schemes found in International Standards such as this part of ISO 2859, with their rules for switching and for discontinuation of sampling inspection, are designed to encourage suppliers to have process averages consistently better than the AQL. Otherwise, there is a high risk that the inspection severity will be switched to tightened inspection under which the criteria for lot acceptance become more demanding. Once on tightened inspection, unless action is taken to improve the process, it is very likely that the rule requiring discontinuation of sampling inspection pending such improvement will be invoked.

3.1.27

consumer's risk quality

CRQ

lot or process quality level that in the sampling plan corresponds to a specified consumer's risk

NOTE Consumer's risk is usually 10 %.

3.1.28

limiting quality

LQ

when a lot is considered in isolation, a quality level which for the purposes of sampling inspection is limited to a low probability of acceptance

3.2 Symbols and abbreviations

The symbols and abbreviations used in this part of ISO 2859-1 are as follows:

Ac	acceptance number
AQL	acceptance quality limit (in percent nonconforming items or in nonconformities per hundred items)
AOQ	average outgoing quality (in percent nonconforming items or in nonconformities per hundred items)
AOQL	average outgoing quality limit (in percent nonconforming items or in nonconformities per hundred items)
CRQ	consumer's risk quality (in percent nonconforming items or in nonconformities per hundred items)
d	number of nonconforming items (or nonconformities) found in a sample from a lot
D	number of nonconforming items in a lot
LQ	limiting quality (in percent nonconforming items or in nonconformities per hundred items)
N	lot size
n	sample size
p	process average
p_x	quality level for which the probability of acceptance is x , where x is a fraction
P_{a}	probability of acceptance (in percent)
Re	rejection number

NOTE The symbol n may be accompanied by a subscript. Numerical subscripts 1 to 5 denote the first to the fifth sample, respectively. In general, n_i is the size of the ith sample in double or multiple sampling.

4 Expression of nonconformity

4.1 General

The extent of nonconformity shall be expressed either in terms of percent nonconforming (see 3.1.8 and 3.1.9) or in terms of nonconformities per 100 items (see 3.1.10 and 3.1.11). Tables 7, 8 and 10 are based on the assumption that nonconformities occur randomly and with statistical independence. If it is known that one nonconformity in an item could be caused by a condition also likely to cause others, the items shall be considered just as conforming or not and multiple nonconformities ignored.

4.2 Classification of nonconformities

Since most acceptance sampling involves evaluation of more than one quality characteristic, and since they may differ in importance in terms of quality and/or economic effects, it is often desirable to classify the types of nonconformities according to agreed classes as defined in 3.1.5. The number of classes, the assignment of nonconformities into

classes, and the choice of AQL for each class should be appropriate to the quality requirements of the specific situation.

5 Acceptance quality limit (AQL)

5.1 Use and application

The AQL, together with the sample size code letter (see 10.2), is used for indexing the sampling plans and schemes provided in this part of ISO 2859.

When a specific value of the AQL is designated for a certain nonconformity or group of nonconformities, it indicates that the sampling scheme will accept the great majority of the lots submitted, provided the quality level (percent nonconforming or nonconformities per 100 items) in these lots is no greater than the designated value of AQL. The sampling plans provided are so arranged that the probability of acceptance at the designated AQL value depends upon the sample size for a given AQL, being generally higher for large samples than for small ones.

The AQL is a parameter of the sampling scheme and should not be confused with the process average that describes the operating level of the manufacturing process. It is expected that the process average will be better than the AQL to avoid excessive rejections under this system.

CAUTION: The designation of an AQL shall not imply that the supplier has the right knowingly to supply any nonconforming item.

5.2 Specifying AQLs

The AQL to be used shall be designated in the contract or by (or in accordance with the prescription laid down by) the responsible authority. Different AQLs may be designated for groups of nonconformities considered collectively or for individual nonconformities as defined in 3.1.5. The classification into groups should be appropriate to the quality requirements of the specific situation. An AQL for a group of nonconformities may be designated in addition to AQLs for individual nonconformities, or subgroups, within that group. When the quality level is expressed as percent of nonconforming items (3.1.8 and 3.1.9), AQL values shall not exceed 10 % nonconforming. When the quality level is expressed as number of nonconformities per 100 items (3.1.10 and 3.1.11), AQL values up to 1 000 nonconformities per 100 items may be used.

5.3 Preferred AQLs

The series of values of AQLs given in the tables are known as the preferred series of AQLs. If, for any product, an AQL is designated other than one of these values, these tables are not applicable.

6 Submission of product for sampling

6.1 Formation of lots

The product shall be assembled into identifiable lots, sub-lots, or in such other manner as may be laid down (see 6.2). Each lot shall, as far as is practicable, consist of items of a single type, grade, class, size and composition, manufactured under uniform conditions at essentially the same time.

6.2 Presentation of lots

The formation of the lots, the lot size and the manner in which each lot shall be presented and identified by the supplier shall be designated or approved by, or according to, the responsible authority. As necessary, the supplier shall provide adequate and suitable storage space for each lot, equipment needed for proper identification and presentation, and personnel for all handling of product required for drawing of samples.

7 Acceptance and non-acceptance

7.1 Acceptability of lots

Acceptability of a lot shall be determined by the use of a sampling plan or plans.

The term "non-acceptance" is used in this context for "rejection" when it refers to the result of following the procedure. Forms of the term "reject" are retained when they refer to actions the consumer may take, as in "rejection number."

7.2 Disposition of non-acceptable lots

The responsible authority shall decide how lots that are not accepted will be disposed of. Such lots may be scrapped, sorted (with or without nonconforming items being replaced), reworked, re-evaluated against more specific usability criteria, or held for additional information, etc.

7.3 Nonconforming items

If a lot has been accepted, the right is reserved to not accept any item found nonconforming during inspection, whether that item formed part of a sample or not. Items found nonconforming may be reworked or replaced by conforming items, and resubmitted for inspection with the approval of, and in the manner specified by, the responsible authority.

7.4 Classes of nonconformities or nonconforming items

Specific assignment of nonconformities or nonconforming items to two or more classes requires using a set of sampling plans. In general, the set of sampling plans have a common sample size, but different acceptance numbers for each class having a different AQL, such as in Tables 2, 3 and 4.

7.5 Special reservation for critical classes of nonconformities

Some types of nonconformities may have critical importance. This subclause specifies the special provisions for such types of designated non-conformities. At the discretion of the responsible authority, every item in the lot may be required to be inspected for such designated classes of nonconformities. The right is reserved to inspect every item submitted for such designated nonconformities and to not accept the lot immediately if a nonconformity of this class is found. The right is also reserved to sample, for specified classes of nonconformities, every lot submitted by the supplier and to not accept any lot if a sample drawn from it is found to contain one or more of these nonconformities.

7.6 Resubmitted lots

All parties shall be immediately notified if a lot is found not acceptable. Such lots shall not be resubmitted until all items are re-examined or retested and the supplier is satisfied that all nonconforming items have been removed or replaced by conforming items, or all nonconformities have been corrected. The responsible authority shall determine whether normal or tightened inspection shall be used on re-inspection and whether re-inspection shall include all types or classes of nonconformities or only the particular types or classes of nonconformities which caused initial non-acceptance.

8 Drawing of samples

8.1 Sample selection

The items selected for the sample shall be drawn from the lot by simple random sampling (see 2.1.5 in ISO 3534-2:1993). However, when the lot consists of sub-lots or strata, identified by some rational criterion, stratified sampling shall be used in such a way that the size of the subsample from each sublot or stratum is proportional to the size of that sublot or stratum (for further details see 2.25 in ISO 2859-0:1995).

8.2 Time for drawing the samples

Samples may be drawn after the lot has been produced, or during production of the lot. In either case, the samples shall be selected according to 8.1.

8.3 Double or multiple sampling

When double or multiple sampling is to be used, each subsequent sample shall be selected from the remainder of the same lot.

9 Normal, tightened and reduced inspection

9.1 Start of inspection

Normal inspection shall be carried out at the start of inspection, unless otherwise directed by the responsible authority.

9.2 Continuation of inspection

Normal, tightened or reduced inspection shall continue unchanged on successive lots, except where the switching procedures (see 9.3) require the severity of the inspection to be changed. The switching procedures shall be applied to each class of nonconformities or nonconforming items independently.

9.3 Switching rules and procedures (see Figure 1)

9.3.1 Normal to tightened

When normal inspection is being carried out, tightened inspection shall be implemented as soon as two out of five (or fewer than five) consecutive lots have been non-acceptable on original inspection (that is, ignoring resubmitted lots or batches for this procedure).

9.3.2 Tightened to normal

When tightened inspection is being carried out, normal inspection shall be re-instated when five consecutive lots have been considered acceptable on original inspection.

9.3.3 Normal to reduced

9.3.3.1 General

When normal inspection is being carried out, reduced inspection shall be implemented provided that all of the following conditions are satisfied:

- the current value of the switching score (see 9.3.3.2) is at least 30; and a)
- production is at a steady rate; and b)
- reduced inspection is considered desirable by the responsible authority. c)

© ISO

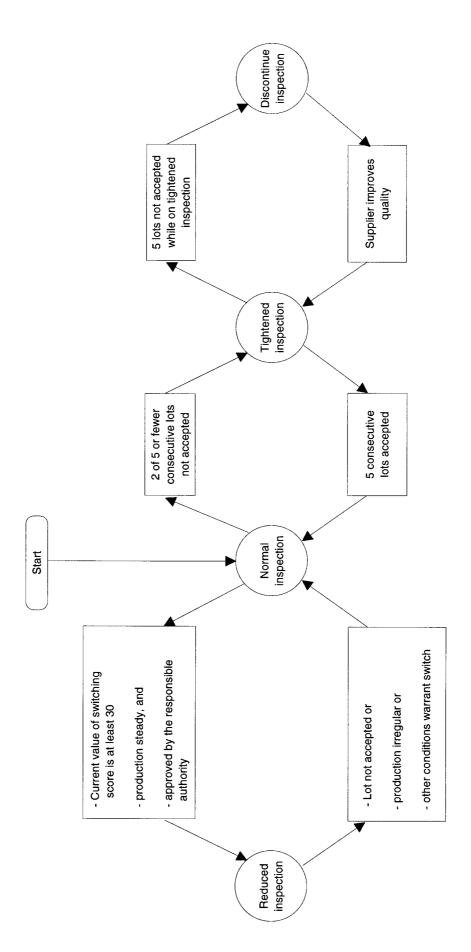


Figure 1 - Outline of the switching rules (see 9.3)

9.3.3.2 Switching score

The calculation of the switching score shall be initiated at the start of normal inspection unless otherwise specified by the responsible authority.

The switching score shall be set at zero at the start and updated following the inspection of each subsequent lot on original normal inspection.

- a) Single sampling plans:
 - 1) when the acceptance number is 2 or more, add 3 to the switching score if the lot would have been accepted if the AQL had been one step tighter; otherwise reset the switching score to zero;
 - 2) when the acceptance number is 0 or 1, add 2 to the switching score if the lot is accepted; otherwise reset the switching score to zero.
- b) Double and multiple sampling plans:
 - when a double sampling plan is used, add 3 to the switching score if the lot is accepted after the first sample; otherwise reset the switching score to zero;
 - 2) when a multiple sampling plan is used, add 3 to the switching score if the lot is accepted by the third sample; otherwise reset the switching score to zero.

NOTE The application of the switching score is illustrated in annex A.

9.3.4 Reduced to normal

When reduced inspection is being carried out, normal inspection shall be re-instated if any of the following occur on original inspection:

- a lot is not accepted; or
- b) production becomes irregular or delayed; or
- other conditions warrant that normal inspection shall be re-instated.

9.4 Discontinuation of inspection

If the cumulative number of lots not accepted in a sequence of consecutive lots on original tightened inspection reaches 5, the acceptance procedures of this part of ISO 2859 shall not be resumed until action has been taken by the supplier to improve the quality of the submitted product or service, and the responsible authority has agreed that this action is likely to be effective. Tightened inspection shall then be used as if 9.3.1 had been invoked.

9.5 Skip-lot sampling

The lot-by-lot inspection in this part of ISO 2859 may be replaced by skip-lot sampling when the requirements of ISO 2859-3 are fulfilled.

NOTE There are limitations to the use of the skip-lot procedures of ISO 2859-3 in place of the reduced-inspection procedures of this part of ISO 2859. Some of the AQLs and inspection levels are not applicable.

10 Sampling plans

10.1 Inspection level

The inspection level designates the relative amount of inspection. Three inspection levels, I, II and III, are given in Table 1 for general use. Unless otherwise specified, level II shall be used. Level I may be used when less discrimination is needed or level III when greater discrimination is required. Four additional special levels, S-1, S-2, S-3 and S-4 are also given in Table 1 and may be used where relatively small sample sizes are necessary and larger sampling risks can be tolerated.

The inspection level required for any particular application shall be specified by the responsible authority. This allows the authority to require greater discrimination for some purposes and less for others.

At each inspection level, the switching rules shall operate to require normal, tightened and reduced inspection, as specified in clause 9. The choice of inspection level is quite separate from these three severities of inspection. Thus, the inspection level that has been specified shall be kept unchanged when switching between normal, tightened and reduced inspection.

In the designation of inspection levels S-1 to S-4, care shall be exercised to avoid AQLs inconsistent with these inspection levels. For instance, the code letters under S-1 go no further than D, equivalent to a single sample size of 8, but it is of no use to specify S-1 if the AQL is 0,1 %, for which the minimum sample size is 125.

The amount of information about the quality of a lot gained from examining samples drawn from the lot depends upon the absolute size of the samples, **not** upon the relative size of the sample to the lot size, provided the sample is small relative to the lot that is examined. In spite of this, there are three reasons for varying the sample size with the lot size:

- a) when the loss due to a wrong decision is high, it is more important to make the correct decision;
- b) with a large lot, a sample size can be afforded that would be uneconomic for a small lot;
- c) truly random sampling is relatively more difficult if the sample is too small a proportion of the lot.

10.2 Sample size code letters

Sample sizes are designated by sample size code letters. Table 1 shall be used to find the applicable code letter for the particular lot size and the prescribed inspection level.

NOTE For economy of space in the tables or to avoid unnecessary repetition in the text, the abbreviated term "code letter" is sometimes used.

10.3 Obtaining a sampling plan

The AQL and the sample size code letter shall be used to obtain the sampling plan from Tables 2, 3, 4 or 11. For a specified AQL and a given lot size, the same combination of AQL and sample size code letter shall be used to obtain the sampling plan from the table for normal, tightened and reduced inspection.

When no sampling plan is available for a given combination of AQL and sample size code letter, the tables direct the user to a different letter. The sample size to be used is given by the new sample size code letter, not by the original letter. If this procedure leads to different sample sizes for different classes of nonconformities or nonconforming items, the sample size code letter corresponding to the largest sample size derived may be used for all classes of nonconformities or nonconforming items, when designated or approved by the responsible authority. As an alternative to a single sampling plan with an acceptance number of 0, the plan with an acceptance number of 1 with its correspondingly larger sample size for a designated AQL (where available) may be used, when designated or approved by the responsible authority. As another alternative, the optional fractional acceptance number plans described in clause 13 may be used when approved by the responsible authority.

10.4 Types of sampling plans

Three types of sampling plans, single, double and multiple, are given in Tables 2, 3 and 4, respectively. When several types of plans are available for a given AQL and sample size code letter, any one may be used. A decision as to the type of plan, either single, double or multiple, when available for a given AQL and sample size code letter, shall usually be based upon the comparison between the administrative difficulty and the average sample sizes of the available plans. For the sampling plans given in this part of ISO 2859, the average sample size of multiple plans is less than for double, and both of these are less than the single sample size (see Table 9). Usually, the administrative difficulty for single sampling and the cost per item in the sample are less than for double or multiple sampling.

11 Determination of acceptability

11.1 Inspection for nonconforming items

To determine acceptability of a lot under percent nonconforming inspection, the applicable sampling plan shall be used in accordance with 11.1.1 to 11.1.3.

11.1.1 Single sampling plans (integer acceptance number)

The number of sample items inspected shall be equal to the sample size given by the plan. If the number of nonconforming items found in the sample is equal to or less than the acceptance number, the lot shall be considered acceptable. If the number of nonconforming items is equal to or greater than the rejection number, the lot shall be considered not acceptable.

11.1.2 Double sampling plans

The number of sample items first inspected shall be equal to the first sample size given by the plan. If the number of nonconforming items found in the first sample is equal to or less than the first acceptance number, the lot shall be considered acceptable. If the number of nonconforming items found in the first sample is equal to or greater than the first rejection number, the lot shall be considered not acceptable.

If the number of nonconforming items found in the first sample is between the first acceptance and rejection numbers, a second sample of the size given by the plan shall be inspected. The number of nonconforming items found in the first and second samples shall be accumulated. If the cumulative number of nonconforming items is equal to or less than the second acceptance number, the lot shall be considered acceptable. If the cumulative number of nonconforming items is equal to or greater than the second rejection number, the lot shall be considered not acceptable.

11.1.3 Multiple sampling plans

In multiple sampling, the procedure shall be similar to that specified in 11.1.2. In this part of ISO 2859, there are five stages so that a decision will be reached by the fifth stage at the latest.

11.2 Inspection for nonconformities

In order to determine the acceptability of a lot in a nonconformities per hundred items inspection, the procedure specified for nonconforming inspection (see 11.1) shall be used, except that the term "nonconformities" shall be substituted for "nonconforming items".

12 Further information

12.1 Operating characteristic (OC) curves

The operating characteristic curves for normal and tightened inspection, shown in Table 10, indicate the percentage of lots which may be expected to be accepted under the various sampling plans for a given process quality. The curves shown are for single sampling, integer acceptance number plans; curves for double and multiple sampling are matched as closely as practicable. The OC curves shown for AQLs greater than 10 are applicable for inspection for number of

nonconformities; those for AQLs of 10 or less are applicable for inspection for nonconforming items. For AQLs of 10 or less these OC curves are also applicable to inspection for number of nonconformities.

For each of the curves shown, values of the quality of submitted product corresponding to selected values of probabilities of acceptance are shown in tabular form. In addition, values corresponding to tightened inspection, and values corresponding to sampling for number of nonconformities for AQLs of 10 or fewer nonconformities per 100 items are also given.

Normalized scheme OC curves found in Table 12 indicate the long-range percentage of lots of various qualities that will be accepted, taking into account the switching rules but disregarding the effect of the rule for discontinuation of inspection (9.4). The abscissa is the ratio of the process quality to the AQL. Each curve represents an acceptance number for normal inspection.

12.2 Process average

The process average can be estimated by the average percent nonconforming or average number of nonconformities per 100 items (whichever is applicable) found in the samples of product submitted by the supplier for original inspection, provided that inspection was not curtailed. When double or multiple sampling is used, only first sample results shall be included in the process average estimation.

12.3 Average outgoing quality (AOQ)

The average outgoing quality is the long-term average quality of outgoing product for a given value of incoming product quality, including all accepted lots, plus all lots which are not accepted, after such lots have been effectively 100 % inspected and all nonconforming items replaced by conforming items.

12.4 Average outgoing quality limit (AOQL)

The AOQL is the maximum of the average outgoing qualities for all possible qualities submitted for a given acceptance sampling plan. Approximate AOQL values are given in Table 8-A for each of the single sampling plans for normal inspection and in Table 8-B for each of the single sampling plans for tightened inspection.

12.5 Average sample size curves

Average sample size curves for double and multiple sampling, as compared with the corresponding single sampling plan for each acceptance number, are given in Table 9. These curves show the average sample sizes which may be expected to occur under the various sampling plans for given levels of process quality. The curves assume that the inspection is not curtailed (see ISO 3534-2:1993, 2.5.7).

12.6 Consumer's and producer's risks

12.6.1 Use of individual plans

This part of ISO 2859 is intended to be used as a system employing tightened, normal and reduced inspection on a successive series of lots to achieve consumer protection while assuring the producer that acceptance will occur most of the time if quality is better than the AQL.

Occasionally, specific individual plans are selected from this part of ISO 2859 and used without the switching rules. For example, a purchaser may be using the plans for verification purposes only. This is not the intended application of the system given in this part of ISO 2859 and its use in this way shall not be referred to as "inspection in compliance with ISO 2859-1". When used in this way, this part of ISO 2859 simply represents a repository for a collection of individual plans indexed by AQL. The operating characteristic curves and other measures of a plan so chosen shall be assessed individually for a plan from the tables provided.

12.6.2 Consumer's risk quality tables

If the series of lots is not long enough to allow the switching rules to be applied, it may be desirable to limit the selection of sampling plans to those, associated with a designated AQL value, that give consumer's risk quality not more than a specified limiting quality protection. Sampling plans for this purpose can be selected by choosing a consumer's risk quality (CRQ) and a consumer's risk (probability of lot acceptance) to be associated with it.

Tables 6 and 7 give values of consumer's risk quality (CRQ) for a consumer's risk of 10 %. Table 6 applies when inspecting for nonconforming items and Table 7 applies when inspecting for number of nonconformities. For individual lots with quality levels less than or equal to the tabulated values of consumer's risk qualities, the probabilities of lot acceptance are equal to or less than 10 %. When there is reason for protecting against a specified limiting quality in a lot, Tables 6 and 7 may be useful for fixing minimum sample sizes to be associated with the AQL and inspection level specified for inspection of the series of lots. ISO 2859-2 gives details of the procedure for selecting sampling plans for lots in isolation.

EXAMPLE Assume a consumer's risk quality of 5 % nonconforming items with an associated probability of acceptance of 10 % or less is desired for individual lots. If an AQL of 1 % nonconforming items is designated for inspection of the series of lots, Table 6-A indicates that the minimum sample size shall be given by sample size code letter L.

12.6.3 Producer's risk tables

Tables 5-A, 5-B and 5-C give the probability of rejection for lots of AQL quality on normal, tightened and reduced inspections, respectively. This probability is denoted as producer's risk in 2.6.7 of ISO 3534-2:1993.

13 Fractional acceptance number plans for single sampling (optional)

13.1 Application of fractional acceptance number plans

This subclause specifies optional procedures for fractional acceptance number sampling plans. The optional procedures may be used with the approval of the responsible authority. Unless otherwise specified, standard procedures shown above shall be followed.

Fractional acceptance number plans are found in Tables 11-A, 11-B and 11-C. For normal and tightened inspection, the fractions 1/3 and 1/2 are found in place of the two entries with arrows in Table 2-A and 2-B between the plans for acceptance number 0 and acceptance number 1. For reduced inspection, the fractions 1/5, 1/3 and 1/2 are found in place of the three entries with arrows in Table 2-C between the plans for acceptance number 0 and acceptance number 1.

The use of fractional acceptance number plans does not require a change in sample size code letters, with the corresponding change in sample size, when the combination of sample size code letter and AQL results in a plan between the 0 and 1 acceptance number as described in 10.3.

13.2 Acceptability determination

13.2.1 Inspection for nonconforming items

13.2.1.1 Constant sampling plans

When the fractional acceptance number sampling plans remain constant for all lots, the following rules apply.

- When there is no nonconforming item in the sample the lot shall be considered acceptable.
- When there are two or more nonconforming items in the sample, the lot shall be considered not acceptable. b)
- When there is only one nonconforming item in the sample from the current lot, the lot shall be considered acceptable only if no nonconforming items have been found in the samples from a sufficient number of immediately preceding lots.

For an acceptance number of 1/2 one such lot is required. For an acceptance number of 1/3 two such lots are required. For an acceptance number of 1/5 four such lots are required. Otherwise the current lot shall be considered not acceptable. If the first lot inspected has one nonconforming item, that lot is not accepted.

13.2.1.2 Non-constant sampling plans

When the sampling plan does not remain constant for each successive lot, because of varying lot sizes and/or switching, use an acceptance score that is calculated and used as follows.

- a) Reset the acceptance score to zero at the start of any phase of normal, tightened or reduced inspection.
- b) If the sampling plan obtained indicates an acceptance number 0, the acceptance score shall be kept unchanged.

If the given acceptance number is 1/5, add 2 to the acceptance score.

If the given acceptance number is 1/3, add 3 to the acceptance score.

If the given acceptance number is 1/2, add 5 to the acceptance score.

If the given acceptance number is 1 or more, add 7 to the acceptance score.

- c) When, for fractional acceptance number plans, the updated acceptance score prior to inspection is 8 or less, the lot can be considered acceptable only if there are no nonconforming items in the sample. When, for fractional acceptance number plans, the updated acceptance score prior to inspection is 9 or more, the lot can be considered acceptable only if there is at most one nonconforming item in the sample. When the acceptance number is an integer, use this acceptance number to determine acceptability (in accordance with 11.1.1 or 11.2).
- d) If one or more nonconforming items are found in the sample, reset the acceptance score to 0 (i.e. after making a decision regarding the acceptability of the lot).

The acceptance score shall be updated (added to) after obtaining the sampling plan but before deciding on the acceptability of the lot. The acceptance score shall be reset after the acceptability decision is made. In contrast, the switching score (see 9.3.3.2) shall be added to or reset after deciding on acceptability of the lot.

NOTE When an acceptance score is used for the case of constant sampling plans, the results are the same as 13.2.1.1.

13.2.2 Inspection for number of nonconformities

In order to determine the acceptability of a lot when inspecting for number of nonconformities, the procedures specified for inspection for nonconforming items (see 13.2.1) shall be used, except that the term "nonconformities" shall be substituted for "nonconforming items".

13.3 Switching rules

13.3.1 Normal to tightened and tightened to normal

These rules are the same as indicated in 9.3.1 and 9.3.2, respectively.

13.3.2 Normal to reduced

The rule for updating the switching score (9.3.3.2) under single sampling when using a fractional acceptance number is as follows.

- a) When the given acceptance number is 1/3 or 1/2, add 2 to the switching score if the lot is accepted; otherwise reset the switching score to zero.
- b) When the acceptance number is zero, add 2 to the switching score if no nonconforming items are found in the sample; otherwise reset the switching score to zero.

13.3.3 Reduced to normal inspection and discontinuation of inspection

The rules are the same as indicated in 9.3.4 and 9.4, respectively.

NOTE Fractional acceptance number sampling plans are not applicable under the ISO 2859-3 skip-lot sampling system.

13.4 Non-constant sampling plan

An example given in annex A illustrates the application of this acceptance sampling system using the optional fractional acceptance number plans with variable lot size.

It is assumed throughout this example that a series of lots are submitted for inspection for nonconforming items, and that it has been agreed to use an AQL of 1 % nonconforming items with general inspection level II. The results for the first 25 lots are given in annex A.

Table 1 - Sample size code letters (see 10.1 and 10.2)

Lot size		Special inspection levels	ection levels		Genera	General inspection levels	levels
	S-1	S-2	e-s	S-4	1	II	Ш
2 to 8	∢	A	٧	٧	٧	٧	В
9 to 15	Α	4	۷	٨	∢	В	O
16 to 25	∢	∢	8	В	В	O	Q
26 to 50	∢	В	В	O	O	0	ш
51 to 90	8	В	O	O	O	ш	ட
91 to 150	B	В	O	Q	Q	LL	g
151 to 280	ω	O	۵	ш	ш	Ø	I
281 to 500	ω	O	۵	ш	ш	I	7
501 to 1 200	O	O	ш	ш	Ø	r	¥
1 201 to 3 200	O	Ω	ш	Ø	I	¥	J
3 201 to 10 000	O	۵	ш	១	ſ		Σ
10 001 to 35 000	O	O	ш	I	¥	Σ	z
35 001 to 150 000	۵	m	g	٦	_	z	۵
150 001 to 500 000	۵	ш	ŋ	٦	Σ	۵.	a
500 001 and over	۵	ш	I	¥	z	Ø	æ

Table 2-A — Single sampling plans for normal inspection (Master table)

Sample Sample Coord Outs Ouzs Cours		8	3e	31	45	<u></u>	T			<u> </u>						ı			
Sumple Corrig Cox16 Cox1		L ŏ		တ္တ	44	<u></u>													
Sample Corriging Oxide Oxide Oxide State Acceptance quality limit, AOL, in percent nonconforming lients and nonconformi		650	√c Re			45	⟨			l 			! !			<u> </u>			\vdash
Sample Corror (100 tens) (normal integrection) Acre Re Arc R		8	æ	15	22	33	45	<u></u>					1						
Semple Acre Acre Acre Quality limit, AQL, in percent nonconforming hems and nonconformines per 100 lenns (normal inspection) size Acre Acre Acre Acre Acre Acre Acre Acr		<u> </u>						•		i			i !			i			
Sumple and nonconformating per 100 items fnormal inspection space. The same and nonconformating per 100 items fnormal inspection space. The same and nonconformating per 100 items fnormal inspection space. The same and nonconformating per 100 items fnormal inspection space. The same and nonconformating per 100 items fnormal inspection space. The same and nonconformating per 100 items fnormal inspection space. The same and nonconformating per 100 items fnormal inspection space. The same and nonconformating per 100 items fnormal inspection space. The same and nonconformating per 100 items fnormal inspection space. The same and nonconformating per 100 items fnormal inspection space. The same and nonconformating per 100 items fnormal inspection space. The same and nonconformating per 100 items fnormal inspection space. The same and nonconformating per 100 items fnormal inspection space. The same and nonconformating per 100 items fnormal inspection space. The same and nonconformating per 100 items fnormal inspection space. The same and nonconformating per 100 items fnormal inspection space. The same and nonconformating per 100 items fnormal inspection space. The same and nonconformating per 100 items fnormal inspection space. The same and nonconformating per 100 items fnormal inspection space. The same and nonconformating per 100 items fnormal inspection space. The same and nonconformating per 100 items fnormal inspection space. The same and nonconformating per 100 items fnormal inspection space. The same and nonconformating per 100 items fnormal inspection space. The same and nonconformating per 100 items fnormal inspection space. The same and nonconformating per 100 items fnormal inspection space. The same and nonconformating per 100 items fnormal inspection space. The same and nonconformating per 100 items fnormal inspection space. The same and nonconformal inspection space. The same and nonconformating per 100 items fnormal inspection space. The same and nonconformation space and nonconformal inspection space. Th		250			4	27	8	44	=	i I			!			1			
Sample 0.010 0.015 0.025 0.040 0.065 0.10 0.15 0.25 size at Re Ac	(uo	150	Ac Re					30 31	\leftarrow	 			<u> </u>			1			— I
Sample 0.010 0.015 0.025 0.040 0.065 0.10 0.15 0.25 size at Re Ac	spect	8	æ		œ	Ξ	15	22	⇐				<u> </u>						
Sample 0.010 0.015 0.025 0.040 0.065 0.10 0.15 0.25 size at Re Ac	nal in					_	11 14	15	52] 			1			
Sample 0.010 0.015 0.025 0.040 0.065 0.10 0.15 0.25 size at Re Ac	(nor			<u> </u>					7	21			! !			 			
Sample 0.010 0.015 0.025 0.040 0.065 0.10 0.15 0.25 size at Re Ac	items	40	Ac	l .			l		4	2	U		 						
Sample 0.010 0.015 0.025 0.040 0.065 0.10 0.15 0.25 size at Re Ac	r 100	52	Ac Re				l					\leftarrow	<u>i </u>			<u>i </u>			
Sample 0.010 0.015 0.025 0.040 0.065 0.10 0.15 0.25 size at Re Ac	es be	15		\$			ı		8	=	15					<u>: </u>			— ∣
Sample 0.010 0.015 0.025 0.040 0.065 0.10 0.15 0.25 size at Re Ac	ormiti	0								 	Ŧ	15	. 22			i. I			Ц.
Sample 0.010 0.015 0.025 0.040 0.065 0.10 0.15 0.25 size at Re Ac	nconfe			_	- /		-			-		14	2	ζί 		i			
Sample 0.010 0.015 0.025 0.040 0.065 0.10 0.15 0.25 size at Re Ac	ou pu	6,5		0			_	7	က	က	7	9	4	21	<u></u>	1			
Sample 0.010 0.015 0.025 0.040 0.065 0.10 0.15 0.25 size at Re Ac	ms a	4,0		♦	0	\Diamond	♦			1						\			<u> </u>
Sample 0.010 0.015 0.025 0.040 0.065 0.10 0.15 0.25 size at Re Ac	ing ite	2,5	\c Re		\Rightarrow	0 1	♦	♦	- 2	ı				=	15		\		
Sample 0.010 0.015 0.025 0.040 0.065 0.10 0.15 0.25 size at Re Ac	formi	7,					-	♦	<u>⟨</u> ⟩	 	က	4	9	œ	=	15	52	⟨⊨	
Sample 0.010 0.015 0.025 0.040 0.065 0.10 0.15 0.25 size at Re Ac	oncor						<u>_</u>			\\ \rac{\sqrt{\chi}}{-}							15 21	22	
Sample 0.010 0.015 0.025 0.040 0.065 0.10 0.15 0.25 size at Re Ac	cent n						<u> </u>	0		_	-	7	б	က	7	2	4	2	
Sample 0.010 0.015 0.025 0.040 0.065 0.10 0.15 0.25 size at Re Ac	n per	0,65						\Rightarrow	0	♦	< <u></u> The state of the stat</td <td>1 2</td> <td>i</td> <td></td> <td></td> <td>l</td> <td>10 1</td> <td>4</td> <td>21</td>	1 2	i			l	10 1	4	21
Sample 0.010 0.015 0.025 0.040 0.065 0.10 0.15 0.25 size at Re Ac	4aL, i	0,40	Ac Re						\Rightarrow	0 1	\diamondsuit	♦	1 2						
Sample 0.010 0.015 0.025 0.040 0.065 0.10 0.15 2 3 3 5 5 6 7 8 13 5 8 8 8 9 125 9 125 9 125 9 125 9 12 13 14 15 9 15 16 17 18 18 18 18 19 19 19 10 10 10 10 10 10 10		0,25					İ			⇌	-	\$	\$	2				ω	=
Sample 0,010 0,015 0,025 0,040 0 0 size Ac Re Ac	ality						i L						4	<u>.</u>		ო	4		
Sample 0,010 0,015 0,025 0,040 0 0 size Ac Re Ac	nce dr						_				_ν 		-			-			\vdash
Sample 0,010 0,015 0,025 0,040 0 0 size Ac Re Ac	eptar									1		=>	•		5>	l			i i
Sample 0.010 0.015 0.025 0,040 size Ac Re	Acc	0,065					-						\Rightarrow	0	\	♦			i i
Sample 0,010 0,015 0,025 size Ac Re Be Ac Re Ac Re Ac Re Be Ac Re		3,040					<u> </u>			<u>. </u>				\Rightarrow	0 1	♦	♦		
Sample 0,010 0,015 size Ac Re Ac Re Ac Re Ac Re Be		L								!			 				占		\vdash
Sample 0,010 size Ac Re 20 20 200 800 C 200 C 20							i			1			 		<i>'</i>	° _ v		1/ /L	
Sample size size size 20 20 20 200 800 800 1250 2000 2 2000 2 2000 2 2000 2 2000			Ac F							i			i i				0	<u></u>	
Sample size size size 20 20 20 200 800 800 1250 2000 2 2000 2 2000 2 2000 2 2000		0,010	Ac Re				 			<u> </u>			I I			<u> </u>	\Rightarrow	0	🗘
		Sample		2	ო	2	8	13	20	32	20	88	125	200	315	200	800	1 250	2 000
, , , , , , , , , , , , , , , , , , , ,	Sample		letter	∀	Ф	O	۵	Ш	Щ	5	I	ה	×	_	Σ	z	<u> </u>	Ø	æ

 Φ = Use the first sampling plan below the arrow. If sample size equals, or exceeds, lot size, carry out 100 % inspection.

 Φ = Use the first sampling plan above the arrow.

Ac = Acceptance number

Re = Rejection number

Table 2-B — Single sampling plans for tightened inspection (Master table)

Sumple size Sumple size of the control of the contr		9	e e	_∞	24	<u></u>										Ţ				
Sumple 0:010 0.015 0.020 0.040 0.055 0.10 0.15 0.25 0.40 0.056 1.0 1;5 2.5 4.0 6.5 1.0		1 000	Ac Re	27 28	41 42	←	 			1			Ţ			Ţ		-		
Sample Corro Cocks Cocks			4	19	28	45				i			i			i				
Sample Coord Outs Coord Outs Outs Outs Outs Outs Outs Outs Outs							1			!			!			!			<u> </u>	
Sample Coord Outs Coord Outs Outs Outs Outs Outs Outs Outs Outs		400	Ac Re	12 13	18 19	27 28	11 42	\leftarrow	•	<u> </u>			-			<u> </u>			 	
Sample Coord		-					-	5		1						1			1 1	
Sumple Count of Local		25(ω	12	18	27.5	4 1 4	7							Ī				
Sumple Cound Quots Good Good Good Good Good Good Good Goo	l (in	50	: Re	J		. 13	19	, 28	⟨⊨	i			<u> </u>					•	<u></u>	
Sample 0,010 0,015 0,025 0,040 0,065 0,10 0,15 0,25 82 82 82 82 82 82 82 82 82 82 82 82 82	ecti	<u> </u>							<u> </u>	 			!						!	
Sample 0,010 0,015 0,025 0,040 0,065 0,10 0,15 0,25 82 82 82 82 82 82 82 82 82 82 82 82 82	insp	100	₽¢ P¢	l			12 13	18 19	\leftarrow	<u> </u>			<u> </u>			!			H	
Sample 0,010 0,015 0,025 0,040 0,065 0,10 0,15 0,25 82 82 82 82 82 82 82 82 82 82 82 82 82	ned	2							19	i ∠			<u> </u>			<u> </u>			<u>'</u>	
Sample 0,010 0,015 0,025 0,040 0,065 0,10 0,15 0,25 82 82 82 82 82 82 82 82 82 82 82 82 82	ghte	96		8	ო	ις.	∞	12	8	7			l]]				
Sample 0,010 0,015 0,025 0,040 0,065 0,10 0,15 0,25 82 82 82 82 82 82 82 82 82 82 82 82 82	ıs (ti	9	c Re	l			1		2 13	8 19	⟨ =								\Rightarrow	
Sample 0,010 0,015 0,025 0,040 0,065 0,10 0,15 0,25 82 82 82 82 82 82 82 82 82 82 82 82 82	item	-		-							<u>.</u>		!			! 			!	
Sample 0,010 0,015 0,025 0,040 0,065 0,10 0,15 0,25 82 82 82 82 82 82 82 82 82 82 82 82 82	8	25	Ac R	\$	-					12 1;	18 1	\				 			=	
Sample 0,010 0,015 0,025 0,040 0,065 0,10 0,15 0,25 82 82 82 82 82 82 82 82 82 82 82 82 82	per	2			<u>_</u>	N	б	4	9	-	5	10	<u>_</u>			<u> </u>				
Sample 0,010 0,015 0,025 0,040 0,065 0,10 0,15 0,25 82 82 82 82 82 82 82 82 82 82 82 82 82	ities				~	-	73	ო	2	00	12		7			I L			Π.	
Sample 0,010 0,015 0,025 0,040 0,065 0,10 0,15 0,25 82 82 82 82 82 82 82 82 82 82 82 82 82	ormi	5	c Re	l		\Rightarrow						2 13	8 19	\leftarrow					<u></u>	
Sample 0,010 0,015 0,025 0,040 0,065 0,10 0,15 0,25 82 82 82 82 82 82 82 82 82 82 82 82 82	20nf	-					-							<u>.</u> თ		! !			!	
Sample 0,010 0,015 0,025 0,040 0,065 0,10 0,15 0,25 82 82 82 82 82 82 82 82 82 82 82 82 82	non	6,5	Ac B	\$>			\Rightarrow			l			12.1;	18 1	\	 				
Sample 0,010 0,015 0,025 0,040 0,065 0,10 0,15 0,25 82 82 82 82 82 82 82 82 82 82 82 82 82	and	oʻ			<u></u>	-		<u></u> ->	7	က	4	φ	6	<u></u>	19	<u></u>				
Sample 0,010 0,015 0,025 0,040 0,065 0,10 0,15 0,25 82 82 82 82 82 82 82 82 82 82 82 82 82	ms	4				0		V	-	-			-	12		7				
Sample 0,010 0,015 0,025 0,040 0,065 0,10 0,15 0,25 82 82 82 82 82 82 82 82 82 82 82 82 82	g ite	2,5	lc Re			\Rightarrow	-		⇒	2			l		2 13	8 19	\leftarrow		÷	
Sample 0,010 0,015 0,025 0,040 0,065 0,10 0,15 0,25 82 82 82 82 82 82 82 82 82 82 82 82 82	ië	-					Ę	_	_								6	<u></u>	<u> </u>	
Sample 0,010 0,015 0,025 0,040 0,065 0,10 0,15 0,25 82 82 82 82 82 82 82 82 82 82 82 82 82	onfo	<u>+,</u>					>				_		ŀ			12.1	181	⟨ =		
Sample 0,010 0,015 0,025 0,040 0,065 0,10 0,15 0,25 82 82 82 82 82 82 82 82 82 82 82 82 82	ono	0,1	. Re					\Rightarrow			\Rightarrow						5 13	3 19	♦	
Sample 0,010 0,015 0,025 0,040 0,065 0,10 0,15 0,25 82 82 82 82 82 82 82 82 82 82 82 82 82	ant n						! 		0	 _						-				
Sample 0,010 0,015 0,025 0,040 0,065 0,10 0,15 0,25 82 82 82 82 82 82 82 82 82 82 82 82 82) Jerce	0,65	Ac B						\Rightarrow	[===	\Rightarrow	-			ł		12 13	18 15	
Sample 0,010 0,015 0,025 0,040 0,065 0,10 0,15 0,25 82 82 82 82 82 82 82 82 82 82 82 82 82	l ë	64									-									
Sample 0,010 0,015 0,025 0,040 0,065 0,10 0,15 0,25 82 82 82 82 82 82 82 82 82 82 82 82 82	AQL	ļ.									0		-\rangle	-		-	ß			
Sample O,010 O,015 O,025 O,040 O,065 O,10 O,15 Size Ac Re Ac		0,25	Ic Re				i		-	<u> </u>	\Rightarrow	- 1	=	\Rightarrow	2	l			1	
Sample 0,010 0,015 0,025 0,040 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	i₹	<u> </u>											-		<u></u>				_	
Sample 0,010 0,015 0,025 0,040 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	qual	0,1		L								→	1		→					
Sample 0,010 0,015 0,025 0,040 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Joe (9								•							8	ო	4	
Sample 0,010 0,015 0,025 0,040 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	>ptar						L									-	-			
Sample 0,010 0,015 0,025 0,040 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Acce	3,065	Ac Re										,	\Rightarrow		=	\Rightarrow			
Sample 0,010 0,015 0,025 size Ac Re Ac Re Ac Re 20 32 So	`														<u> </u>	-	_		 	
Sample 0,010 0,015 size Ac Re Ac Re 20 20 200 200 200 200 800 800 800 800 8															→	ŀ		→		_
Sample 0,010 0,015 size Ac Re Ac Re 20 20 200 200 200 200 800 800 800 800 8		025	; Re										!				-		\Rightarrow	7
Sample 0,010 size Ac Re Ac Re 20 32 50 80 800 800 1250 2000 2000 800 800 800 800 800 800 800							 												"	-
Sample 0,010 size Ac Re Ac Re 20 32 50 80 800 800 1250 2000 2000 800 800 800 800 800 800 800		0,015	³c R€													,	\Rightarrow		\$	
Sample size size size 2 2 20 20 200 2 2000 2 2000 3 15																- -	······		-	
			Ac										<u> </u>			I L		→	0	
		nple		2	 E	2	80	ဗ	Q.	Ş	0	Q	25	8	15	8	8	220	8	20
Sample Size size odde lefter C A A A C B A S C C C B A S C C C B A C C C C C C C C C C C C C C C						-,			7	8	- 2	80	1,	×	က်	5(—— ———	+ ∠	2.0	3.1
ος σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ	l age	ize ize	tter	<	B	ပ	٥	ш	ш		I	7	Υ		>	 z	Δ.	a	<u>«</u>	S
	Sa	ν ς	<u>a</u>																	

及 = Use the first sampling plan below the arrow. If sample size equals, or exceeds, lot size, carry out 100 % inspection.

 $[\]Phi$ = Use the first sampling plan above the arrow.

Ac = Acceptance number

Table 2-C — Single sampling plans for reduced inspection (Master table)

	0	ø	31	Ξ					<u> </u>				-		:			<u> </u>
	1 000	Ac Re	8	30 31	\leftarrow	1			†						1			
			22	52	52	-			<u> </u>			<u> </u>			<u> </u>			I
	650	Ac Re				l<≔			<u>: </u>						<u> </u>			
			5 21	2	27	01			!			<u> </u>			-			
	400	Ac Re	15	15	15	22	\leftarrow		<u> </u>						<u> </u>			≒
	4		4	11 4	11 4	21			<u>i</u>			<u>i</u>			i			i
	250	Ac Re	1		Ξ	15	22		<u> </u>						<u> </u>			<u>-</u>
	స		유	9	9	14	21	7	I I			1			1			
=	9	Re	8	8	6	F	15	7	l			i			i			
厚	150	Ac Re	_	7	œ	9	11 14 15	7	I			ı			ı			,
l e			9	9		6	F	1	\vdash			 			 	-		\vdash
ins	5	Ac Re	2	ις.	9	· &	10	(=	Ţ			i			i			?
eq	\vdash		4	4	9	7	 6	Ŧ	i 			'			-			┼─┤
율	65	Ac Re	m	က	2	9	œ	9	<=							-		-
l ě	<u> </u>						-		 -			I			<u> </u>			┼┤
ns	5	Ac Re	_ε	ო	4	9	7	0	=	\leftarrow								-
ite.	<u> </u>		2	0	<u>е</u>	2	9		유			! 			! 			\vdash
8	52	Ac Re	2	2	က	4	9	7	6	10 11	\leftarrow	<u> </u>			<u> </u>			ا ب
] F	<u> </u>			-	N	က	က	9	8	유		<u>i</u>			1			
) pg	15	Ac Re		<u>_</u> _	2	က	4	9	7	6	1	\ <u> </u>						
ties	Ľ			~		2	က	5	9	œ	9	1			1			<u> </u>
AQL, in percent nonconforming items and nonconformities per 100 items (reduced inspection)					7	2	ო	4	9	7	6	Ξ	<u></u>		<u> </u>			
<u> </u>	우	Ac Re	—		 √	-	8	ო	ıs.	9	œ	₽	⟨ =		i			-
8	٠,٠		-				7	ო	4	9		6	=		 			\vdash
ē	6,5	Ac Re	0	\Diamond		≓>	_	N	m	Ŋ	9	ω	9	(=				
g g	<u> </u>					<u> </u>		~~~	ю ю	4	9	\ \frac{1}{\sigma}	-	=	<u> </u>			
S	4,0	Ac Re	➾	0	\Diamond		\Rightarrow								 ⟨=			
Ë		4				<u> </u>		_	7		5	9		유	Ļ			\sqcup
g E	2,5	Ac Re		⇒	-	\Diamond		\Rightarrow	7	က	4	9	7	6	11	\leftarrow		≒
Ë	.,				0	`		· · · · · · · · · · · · · · · · · · ·	_	0	က	5	9	8	2	<u> </u>		
l j	1,5	Ac Re			_ >	-	\Diamond			7	က	4	9	7	6	1	<u>/_</u>	<u>نے</u> ا
Į į					V	0	7		 	-	8	က	Ŋ	9	ω	9	4	
👸	1,0	Ac Re						₽		7	2	က	4	9	7	6	1	4
ļ u	-,	Ac				-	0	7	_	— /	-	7	က	ß	ဖ	œ	10	7
Cer	ίδ	3e				<u> </u>	$\overline{}$	-	1			7	က	4	9	7	6	Ξ
per	0,65	Ac Re				i	→	0	⟨₩		- -√		Ø	ო	2	9	œ	유
_⊆.	0							_	-			 	7	က	4	9	7	6
[년	0,40	Ac Re						=>		\Diamond		≓>	-	α	, m	22	y	80
						 			 			\vdash	· .		_			-
iğ.	0,25	Ac Re							\Rightarrow	-	\Diamond		\Rightarrow	0	8	4	9	7
<u>≔</u> 						 			<u> </u>	0		<u> </u>	•		7	က	2	9
<u>a</u>	0,15	Ac Re				<u> </u>			<u> </u>	⇒	-	令		⇒	01	က	4	ဖ
) p	0					<u> </u>			<u> </u>		0	<u> </u>			-	N	က	2
Acceptance quality limit,	0,10	Ac Re				<u> </u>					<u>_</u>	-	\$			2	က	4
pta	o,								I.		~	0	7		/ 	-	Ø	၈
Š	65	Re				ı			l				-	/ L		$\overline{}$	0	၈
४	0,065	Ac Re				ī			i			- ->	0	\Diamond		~ ∕,	-	2
									 			L		-	1		N	2
,	0,040	Ac Re										:	⇒>	0	\Diamond		¬>	_
									i 			├						
	0,025	Ac Re							1			l	-0-	\Rightarrow	0	\leftarrow		
			_			1			<u>. </u>			Щ_						<u> </u>
	0,015	Ac Re													<u>`</u>	-	\leftarrow	<u>'</u>
						l 			l i 			<u> </u>			<u> </u>	0	`	
	0,010	Ac Re														<u>_</u> >	-	
لـــــا		Ac														<u> </u>	0	
	Sample size												_	ın	0	ın	0	
	size size		8	0	2	က	5	æ	13	20	32	20	80	125	200	315	500	800
_ n									├			ļ						$\vdash \vdash \vdash$
Sample	size code	letter	⋖	В	O	Q	ш	ш	ل ا	I	~	ᅩ	_	Σ	z	۵	σ	ا ي
Sar	. <u>v</u> S	<u>ē</u>	•	_	Ĭ	_	_	_	١Ŭ		•	-	_	~	~	_	0	

及 = Use the first sampling plan below the arrow. If sample size equals, or exceeds, lot size, carry out 100 % inspection.

 $\mathbf{\hat{Q}}$ = Use the first sampling plan above the arrow.

Ac = Acceptance number

Re = Rejection number

Table 3-A — Double sampling plans for normal inspection (Master table)

	8	æ		31		r			<u> </u>			l L						<u> </u>
	1 000	e Ac Re	*	25 56	1 7	<u> </u>			1			 						-
	650	Ac Re	*	17 22 37 38	25 31 56 57	←			<u>. </u>			<u> </u>			: !			
	400	Ac Re	*	16 27	38	5 31 6 57	\		<u>i</u>			!			<u> </u>			=
	\vdash	R A		11 11 19 26	16 17 27 37	22 25 38 56	31		!			<u> </u> 			1 1			
	250	₽ S	*	7 18	11	17 37	25 56	7	-			!						
ction)	150	Ac Re	*	5 9 12 13	7 11	11 16 26 27	17 22 37 38	⇐	l I			l I			! !	***************************************		<u></u>
uspe	8	Ac Re	*	9 0	9 5	1- 6-	16 27	\	i			!			<u> </u>			
mali	65	8 8	*	5 3	6 5 10 12	9 7 13 18	11 11 19 26	16	1			! 	***		<u> </u>			
ou) s	L	8	<u> </u>	5 2	5 3	5 2	9 7 13 18	11 11 19 26	16			 					-,	<u> </u>
item	8	Ac Re	*	- 4	2 6	3 6 9 10	5 9 12 1	7 1	11 11 26 2	\Downarrow	····	<u> </u>			l I I			
100	25	Ac Re	*	ω 4	4 5	2 5	3 6 9 10	2 13	7 11 18 19	1 16 6 27	\Diamond	I L			1			
s per	15	Ac Re	\$	30	ε 4	5 2 6	5 2	6 5 12	9 7	11 11 19 26	16 27	=						
rmitie	-		7	0 -	3.0	ε 4 - 4	3 2 5 6	5 3 7 9	5 12	9 7 13 18	11 11 19 26	16 4			 			
outo	9	Ac Re	_	\Rightarrow	0 -	3 8	1 2 4	2 9	3 6 9 10	5 8 12 1	7	11 28	\downarrow	*	<u> </u>			
non	6,5	Ac Re	*		4	0 2 1 2	0 3 3 4	1 3	2 5 6 7	3 6 9 10	5 9 12 13	7 11 18 19	11 16 26 27	\Diamond	<u> </u>			
in percent nonconforming items and nonconformities per 100 items (normal inspection)	4,0	Ac Re	₽	*	♦	⇒	2 2	ω 4	ည	7 2	9 0	9 2	19	16 27	<u></u>			
item	\vdash	Re	<u> </u>				0 1	3 0	£ 4	3 2 5 5	5 3	6 5	9 7	11 11 19 26	16 2			
ming	2,5	¥	Ш	⇒	*	♦	<u></u>	0-	3	4 م	0.0	ო თ	2 2	7	11 26	♥		
onfor	1,5	Ac Re	=		\Rightarrow	*	Ŷ	➾	0 2	3 4	1 3	2 5 6 7	3 6 9 10	5 9 12 13	7 11 18 19	11 16 26 27	\	
nonc	1,0	Ac Re					*	♦	4	2 2	ω 4	ည	2 /	စ င္	ο <u>ε</u>	1 0	16	♦
cent	⊢	Re								- 0	2 2 3	ε 4 - 4	5 2 6	5 3 7 9	6 5 10 12	9 7 13 18	11 19 26	16 27
in pe	0,65	Ac					-	*	♦	�	0 -	0 %	- 4	0 0	ი ი	2 2	7	11 28
	0,40	Ac Re	=			<u> </u>		\Rightarrow	*	♦	➾	1 2	0 e	+ 4 8 2	2 5 6 7	3 6 9 10	5 9 12 13	7 11 18 19
mit,	0,25	Ac Re							Î	*	♦	4	0101	ω 4	o π	7 2	ه د	9 2
uality limit, AQL,	0,15	Ac Re								_	*	♦	-°-	2 2	ω 4 ~ 4	5 2 6	5 3	6 5 10 12
e das	\vdash	1 ~								_/		7		0 +	3 0	6 4 - 4	9 2 9	5 3
otano	0,10	Ac Re						·			\Rightarrow	*	♦	➾	0 -	0 %	+ 4	2 5
Acceptance qu	0,065	C Re	=										*	♦	分	0 2 1 2	6 4	1 3
`	0,040	Ac Re Ac Re												*	♦	\$	2 3	8 4
			ļ					"							4		0	2 0 2 3
	0,025	Ac Re												\Rightarrow	*	❖	\$	0 +
	0,015	Ac Re	<u></u>	•••				1							\Rightarrow	*	\Downarrow	
	0,010	Ac Re /									·					>	*	♦
<u></u>		_														_ <u>'</u>		
Cumu-	lative sample	size		2 4	3	5	8 16	13 26	2 4	32	50 100	80 160	125 250	200 400	315 630	500 1 000	800 1 600	1 250 2 500
	Sample			2	3 3	2 2	8 8	13	20	32	50 50	80 80	125 125	200	315 315	500	800	1 250 1 250
<u></u>																		
	Sample			First Second	First Second	First Second	First Second	First Second	First Second	First Second	First Second	First Second	First Second	First Second	First Second	First Second	First Second	First Second
Sample		- i	<u> </u>				-											
ΙĒ	size	letter	٧	B	၁	۵	ш	ഥ	g	エ	٦	ᅩ		Σ	Z	σ.	a	Я

 \circlearrowleft = Use the first sampling plan below the arrow. If sample size equals, or exceeds, lot size, carry out 100 % inspection.

 $[\]triangle$ = Use the first sampling plan above the arrow.

Ac = Acceptance number

Re = Rejection number

^{* =} Use the corresponding single sampling plan (or alternatively use the double sampling plan below, where available).

Table 3-B — Double sampling plans for tightened inspection (Master table)

Sample			Cumu-					Acc	Acceptance		ality liı	mit, AC	JL, in	percer	nt nonc	confor	ming it	tems a	nd no	oJuoon	rmities	; per 1(30 iten	ns (tigh	quality limit, AQL, in percent nonconforming items and nonconformities per 100 items (tightened inspection)	inspec	tion)				
size	Sample	Sample size	lative sample	0,010	0,015	0,025	5 0,040		0,065 0	0,10	0,15	0,25	0,40	0,65	1,0	1,5	2,5	5 4,0	9	1 1	10	15 2	25 '	40 (65 1	100	150	250	400	920	1 000
ĕ			size /	Ac Re	Ac Re	Ac Re	e Ac Re	Re Ac	Ac Re A	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	e Ac Re	de Ac Re	Re Ac Re	Ac	Re Ac	Ac Re Ac	Ac Re Ac	Ac Re Ac	. Re Ac	Be Ac	c Re Ac	æ	Ac Re A	Ac Re	Ac Re	Ac Re
٧												=		_				_	➾	_		\ 	♦	*	*	*	*	*	*	*	*
В	First Second	0.01	2 4															⇒				<u>V</u>	2 3	3 1	3 2 9	5 4 7 10	7	6 10 9 15 16 23	9 14 1	15 20 34 35	23 29 52 53
ပ	First Second	ဇဗ	၉ ၅							- "				•			\Rightarrow	*			<u>-</u> >	30	E 4	3 2 9	5 4 7 10	t 7 6 11 15	5 16 23	14 24	15 20 2 34 35 5	23 29 52 53	⇐
D	First Second	5	5 10	i							<u> </u>	i	! <u> </u>	! ! !			*		\Rightarrow	0 -	0 8	£ 4	5 2 6	5 7 10	1 7 6 11 15	10 9 5 16 23	14 15 3 24 34	20 35	23 29 52 53	(=	<u> </u>
E	First	8 8	8												\Rightarrow	*		ightharpoons	0 -	2 2 3	£ 4	5 2 6	5 4 7	7 6	10 9 5 16 23	14 15 3 24 34	5 20 23	3 29	\		
н	First Second	13	13 26			-								\Rightarrow	*		⇒	0 -	3 0	€ 4 ← 4	5 2 6	5 4 7	7 6	10 9 16 23	14 2	· =	⊱	\			
G	First Second	20 20	20		! !			 	! !	 	i	i	<u> </u>	! ! * !		ightharpoons	0 -	2 0 2 3	£ 4	3 2 5 6 7	5 7 10	7 6	10 9 16 23	4- 42	<u> </u>	! ! !	<u> </u>	i 	 	<u>i </u>	<u>. </u>
	First Second	32	32 64							····		\Rightarrow	*		\Rightarrow	0 -	30	ω 4 - 4	5 2 6	5 4 7	7 6	10 9 16 23	14 24	\ =							
	First Second	50	50 100								<u></u> →	*		\Rightarrow	0 -	0 %	6 4 - 4	9 2 9	5 4 70	7 6	10 9 16 23	14 2									
K	First Second	80	80 160				i 1				*	_	\Rightarrow	0 2 2	0 3	- 4	5 3	5 4 7	7 6 T	10 9 16 23	14 2		i !	 	! !			1	l 	i 	<u></u>
	First Second	125 125	125 250						⇒	*		\Rightarrow	0 2	3 4	1 3	2 9	5 4 7 7 10 1	7 6 1 11 15 1	10 9 16 23	14 2											
Σ	First	200	200 400				≕>		*		\Rightarrow	0 2	0 3 3 4	+ 4 5	2 5 6 7	4 5	7 6 1	10 9 1 16 23 2	14 24	1											
N	First Second	315 315	315 630	_		\Rightarrow	*				102	0 3 3 4	t 4	2 6 7	4 7 10 11	6 15	10 9 1 16 23 2	14 24	1	 	 	 	i I				<u> </u>	i	 	<u>!</u>	<u> </u>
	First Second	200	500 1 000		\Rightarrow	*			<u>°</u> -	01 01	0 E	£ 4	2 5 6 7	4 7 10 11	6 10 15 16	68	14			-											,
	First	800	800 1 600	\Rightarrow	*		⇒	^	2 0	ω 4	4 - 3	2 5 6 7	4 7 10 11	6 10 15 16	9 14 23 24	4 =															
R	First Second	1 250 1 250	1 250 2 500	*	4		0 -	2 0 2 3	3 1	53	2 5 6 7 1	4 7	6 10 15 16	9 14 23 24	❖	<u> </u>				-								<u> </u>			
S	First Second	2 000	2 000 4 000			0 -	0 0				<u> </u>																				

 $\sqrt{\ >}$ = Use the first sampling plan below the arrow. If sample size equals, or exceeds, lot size, carry out 100 % inspection.

 $\overleftarrow{\Box}=\mbox{Use}$ the first sampling plan above the arrow.

Ac = Acceptance number

Re = Rejection number

* = Use the corresponding single sampling plan (or alternatively use the double sampling plan below, where available).

Table 3-C — Double sampling plans for reduced inspection (Master table)

	8	Re	Γ.		¢=				<u> </u>	_		i			i			
	1 000	Ac	*	*	7	İ			<u> </u>			 			i I			
	650	Ac Re	*	*	*	⇐			1						<u>. </u>			<u>-</u>
	400	Ac Re	*	*	*	1 16 6 27	=		<u>i</u>			<u> </u>			<u> </u>			
		Ac Re A				11 11 26	16) 			<u>.</u> !			! !			<u></u>
	250		*	*	*	9 7 13 18	11 26	7	!			-			!			<u> </u>
ection	150	Ac Re	*	*	*	5 5	ا 4	⟨	!			! !			! !			<u>-</u>
insp	ş	Ac Re	*	*	*	4 7 10 11	5 9 12 13	₩	<u> </u>									
luced	65	8	*	*	*	9 8	~ =	9 5				 						<u> </u>
s (rec		ReAc			_	4 3 6 7	6 4 D	1 5 5 5	9 51	1								<u> </u>
item	4	Ac	*	*	*	212	8 7	4 0	2 5	⟨ =	1	 			i I			
1 90	52	Ac Re	*	*	*	4 - 3 ع	2 2 4 5	3 6	4 7 10 11	5 9	⊱	<u> </u>			<u> </u>			
es be	15	Ac Re	_	\Rightarrow	*	ω 4	ი ი	4 9	ဖထ	7 ==	5 9 2 13	Ų						
Zmitį.	10	Ac Re A	_			2 2 3	£ 4	5 2 5	4 3	8 4 0	1 7	ο <u>υ</u>			! !!			! !
confc		Re			<u>~</u>	0 -	3 0	£ 4	5 2 2	6 7	6 4 8 10	7 5	e t] 			
d non	6,5	β	*	♦		\Rightarrow	0 -	0 %	- 4	5 6	3 6	7 + 01	ი 2	₽				
Acceptance quality limit, AQL, in percent nonconforming items and nonconformities per 100 items (reduced inspection)	4,0	Ac Re	4	*	♦		\Rightarrow	0 2 1 2	0 3 3 4	1 3	2 4 5 6	3 6	4 7	5 9 12 13	⇐			
g iten	2,5	Ac Re		⇒	*	Ų.		⇒	22	ω 4	ကေ	4 0	ပ ဆ	7 =	13	=		
rmin	<u> </u>						1		0 -	3 0	£ 4	3 2 5	6 7	6 4 0 4 0	7 5 11 12	9 51		! !
confc	1,5	e Ac Re			=>	*	♦		\Rightarrow	0 -	0 %	£ 4	21.72	2 3	4 5	2 2	<u></u>	,—) ! !
nt nor	1,0	Ac Re				\Rightarrow	*	\$		ightharpoons	0 1 2 2	3 4	4 ع د	2 4 5 6	3 6 7 8	4 7 10 11	5 9 12 13	♦
ercer	0,65	Ac Re	_				\Rightarrow	*	₽		\Rightarrow	0 2 1 2	0 8 4	4 ع د ع	2 4 5 6	3 6	4 7	5 9 12 13
in E	0,40	22	_					\Rightarrow	 *	♦			2 2	ω 4	2 3	4 0	9 8	7
, AQI	\vdash	Re Ac										_	0 -	3 0	ω 4 - 4	5 2	4 6 7	6 4 8 10
/ limit	0,25	¥							<u> </u>	*	\$		\Rightarrow	0 -	0 %	- 4	2 5	8 7
nality	0,15	Ac Re	_						<u> </u>	\Rightarrow	*	♦	<u></u>	\Rightarrow	0 2 1 2	0 8 4	£ 4	2 4 5 6
nce q	0,10	Ac Re	_						l L		\Rightarrow	*	♦	_		22	ω 4	e 1
cepta	0,065	Ac Re A							[[·		*	♦		_/\ °-	2 2	£ 4
Acı	0,0	le Ac												7		- /	0 -	3 0
	0,040	Ac Re							 				\Rightarrow	*	❖		\Rightarrow	0 -
	0,025	Ac Re		·····										\Rightarrow	*	\leftarrow		_∏_
	0,015	Ac Re	_												<u> </u>	*	=	
		Re A			_											<u> </u>	·	1
	0,010	Ac Re							l l				_			\Rightarrow	*	4
Cumu-	lative sample	size				2 4	3	5 10	8 16	13 26	20 40	32 64	50 100	80 160	125 250	200	315 630	500 1 000
	Sample size					2 2	ဗ	5	8	£1 £1	20	32	50	8 8	125 125	200	315 315	500 500
	Sample					First Second	First Second	First Second	First Second	First Second	First Second	First	First Second	First Second	First Second	First Second	First Second	First Second
Sample		letter	A	В	U	D Se	В В	т 1 %	n n	H Se	L Se	у У	L Se	N Se	N S	٦ ٦ %	D Se F	R Se
ഗ്																<u> </u>		

्रे = Use the first sampling plan below the arrow. If sample size equals, or exceeds, lot size, carry out 100 % inspection.

 \triangle = Use the first sampling plan above the arrow.

Ac = Acceptance number

Re = Rejection number

* = Use the corresponding single sampling plan (or alternatively use the double sampling plan below, where available).

© ISO ISO 2859-1:1999(E)

Table 4-A — Multiple sampling plans for normal inspection (Master table)

	То	0	т —								i					i					:				
	1 000	Ac Re	*	‡	₽	<u> </u>					<u>.</u> !					<u>!</u> !					<u>!</u> !				_
	650	Ac Re	*	‡	‡	\					<u>:</u>										<u> </u>			**	_
	400	Ac Re	*	‡	‡	16	27	38	48	27	_					<u> </u>					 				
	<u> </u>		<u> </u>	┝		9	19 17	27 29	34 40	38 56	8		38	48		i					<u>i </u>				_
	250	Ac Re	*	‡	‡	4 12	=	19	28	37	6 16	17 27	59	40	56 57	↓		'			i i				_
ction	150	Ac Re	*	‡	‡	2 9	7 14	13 19	20 25	26 27	4 12	11 19	19 27	28 34	37 38	ᡧ					<u> </u>				_
inspe	90	Ac Re	*	‡	‡	7	9	5	17	6	6	4	19	25	27	<u></u>	•••				1	•			
rmal						5	8	10 8	12 12	13 18	7 2	10 7	13 13	17 20	19 26	6	14	19	25	27	1				
ou) si	65	e Ac Re	*	‡	‡	0	ო	9	<u>ი</u>	10 12	-	4	80	12	48	α.	7	13	20	26	Ų.		_	10	_
item	6	Ac Re	*	‡	‡	0 4	1 6	3	5	9 10	0 5	3 8	6 10	9 12	12 13	1 7	4 10	8 13	12 17	18 19	2 9	7 14	13 19	20 25	26 27
er 10(25	Ac Re	₽	‡	‡	4	1 5	2 6	4 7	6 7	0 4	1 6	3 8	5 9	9 10	0 5	3 8	6 10	9 12	12 13	1 7	4 10	8 13	12 17	18 19
ies p	15	Ac Re		╧	‡	6	ო	4	£	2	4	Ŋ	9	7	7	4	9	80	6	9	2	∞	9	2	3
formit	6	_	_	_	<u>_</u>	7	0	9	3	4	8	د	4 2	5	2	4	5	9	7 5	7	0	9	8	<u>ი</u>	10 12
ncon		e Ac Re			<u>¬</u> >	#	0	0	-	₀	#	0	-	3	4	#	-	2	4	2	0	-	es	ιΩ	6
ou pt	6,5	Ac Re	*	❖	<₽	# 2	0 2	0 2	0	1 2	#	0	0	-	3	#	0	4	2 5	4	#	5	2 6	4 7	2 9
ns ar	4,0	Ac Re	➾	*	\$	_				⇒	# 2	0 2	0 2	0 2	1 2	# 2	0 3	0 3	3	3 4	# 3	0 3	4	2 5	5
g iter	2,5	Ac Re		╧	*	<u> </u>				_					 _ >	7	8	7	N	~	8	60	_.	က	4
ormin					\sqsubseteq	1					_					#	0	0	0	_	2	2 0	2	2	2
Jconf	1,5	e Ac Re			\Rightarrow	<u> </u>		*			<u>^</u>				_					⇒	#	0	0	0	-
																•									
nt no	1,0	Ac Re	E			! !				⇒			*			ᡧ				_					⇒
percent no	0,65 1,0	Ac Re Ac F	_			•							*		⇒	₽		*		_	_ _				→
L, in percent no	0,65	Ac Re											*		弁	_		*			4		*		☆
it, AQL, in percent no	0,40 0,65	Ac Re Ac Re											*		⇒	-		*			U →		*		$ \uparrow $
ty limit, AQL, in percent no	5 0,25 0,40 0,65	e Ac Re Ac Re								-			*					*					*		
quality limit, AQL, in percent nonconforming items and nonconformities per 100 items (normal inspection)	0,15 0,25 0,40 0,65	Ac Re Ac Re Ac Re									1		*					*					*		유 미 의 유 유
ance quality limit, AQL, in percent no	5 0,25 0,40 0,65	e Ac Re Ac Re											*	-				*			1		*		유 미 유 유 유
sceptance quality limit, AQL, in percent no	0,10 0,15 0,25 0,40 0,65	Ac Re Ac Re Ac Re Ac Re							1				*					*					*		$ \Upsilon = \Upsilon \Upsilon \Upsilon \Upsilon \Upsilon \Upsilon \Upsilon \Upsilon \Upsilon$
Acceptance quality limit, AQL, in percent no	0,065 0,10 0,15 0,25 0,40 0,65	Ac Re Ac Re Ac Re Ac Re						***************************************					*					*			1		*		$ \Upsilon = \Upsilon + \Upsilon $
Acceptance quality limit, AQL, in percent no	0,040 0,065 0,10 0,15 0,25 0,40 0,65	AC Re AC Re AC Re AC Re AC Re AC Re											*					*					*		
Acceptance quality limit, AQL, in percent no	0,025 0,040 0,065 0,10 0,15 0,25 0,40 0,65	Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re											*					*					*		유 미 유 유 유 유 유 유
Acceptance quality limit, AQL, in percent no	0,040 0,065 0,10 0,15 0,25 0,40 0,65	AC Re AC Re AC Re AC Re AC Re AC Re											*					*					*		
Acceptance quality limit, AQL, in percent no	0,015 0,025 0,040 0,065 0,10 0,15 0,25 0,40 0,65	Ac He Ac He Ac He Ac He Ac He Ac He Ac He Ac He											*					*					*		<u> </u>
Acceptance quali	0,010 0,015 0,025 0,040 0,065 0,10 0,15 0,25 0,40 0,65	AC Re AC Re AC Re AC Re AC Re AC Re AC Re AC Re AC Re					4	9				9	*	22			0	*	0.			9	*	20	유 [수 수 수 수 수 수 수 수 · ·
Acceptance quality limit, AQL, in percent no	lative 0,010 0,015 0,025 0,040 0,065 0,10 0,15 0,25 0,40 0,65	Ac He Ac He Ac He Ac He Ac He Ac He Ac He Ac He					4	φ	ω			φ	*	12			0	*	50			16	* *	35	유 미 유 유 유 유 유 유 유 유
Acceptance quali	Sample lative 0,010 0,015 0,025 0,040 0,065 0,10 0,15 0,25 0,40 0,65	AC Re AC Re AC Re AC Re AC Re AC Re AC Re AC Re AC Re					2	9 Q	8 8			ო	* * * * * * * * * * * * * * * * * * *	3 12			S	τ ο *	2 20			80	8 24	8 35	유 미 의 유 유 유 유 유 유 유 용 용
Acceptance quali	lative 0,010 0,015 0,025 0,040 0,065 0,10 0,15 0,25 0,40 0,65	AC Re AC Re AC Re AC Re AC Re AC Re AC Re AC Re AC Re				2	2			10	σ	ო			15	ις.	S			25	Φ	80			
Acceptance quali	Sample sample sample sample sample 0,010 0,015 0,025 0,040 0,065 0,10 0,15 0,25 0,40 0,65	Size Ac Re	V A	а а		2 2		0	2	2 10	8		ო	က	3 15	LO.		ß	S	5 25	ω ω		80	80	8

S = Use the first sampling plan below the arrow. If sample size equals, or exceeds, lot size, carry out 100 % inspection.

 $[\]triangle$ = Use the first sampling plan above the arrow.

Ac = Acceptance number

Re = Rejection number

^{* =} Use the corresponding single sampling plan (or alternatively use the double sampling plan below, where available).

^{++ =} Use the corresponding double sampling plan (or alternatively use the mutliple sampling plan below, where available).

^{# =} Acceptance is not permitted for this sample size.

Table 4-A — Multiple sampling plans for normal inspection (Master table) (continued)

 \triangle = Use the first sampling plan above the arrow.

Ac = Acceptance number

Re = Rejection number

* = Use the corresponding single sampling plan (or alternatively use the double sampling plan below, where available).

++ = Use the corresponding double sampling plan (or alternatively use the mutliple sampling plan below, where available).

= Acceptance is not permitted for this sample size.

© ISO ISO 2859-1:1999(E)

Table 4-A — Multiple sampling plans for normal inspection (Master table) (concluded)

	1 000	Ac Re	⊹					<u> </u>					<u>i </u>					1				_
			Ľ					1					-) 				
	650	Ac Re	<=					!					1			_		1				_
	400	Ac Re	∠ ⊨										<u> </u>									_
	ļ							<u> </u>					<u> </u>					i 				
	250	Ac Re	<⊨					i														_
tion	150	Ac Re	Ų					<u> </u>														_
sbec	-		-					<u> </u>					1					<u> </u>				
la in	100	Ac Re	♥					<u> </u>										i				<u> </u>
norm	59	Ac Re	⊱										<u> </u>					<u> </u>				_
) sm	_		1] 					 				
0 ite	40	Ac Re	7					<u> </u>														<u> </u>
er 10	25	Ac Re	⟨	-				<u>i </u>					<u>. </u>					<u>: </u>				_
les p	15	Ac Re	<=															i i				_
rmit			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					<u> </u>										1				
confc	10	Ac Re	♥					1					I L					<u> </u>				—
Acceptance quality limit, AQL, in percent nonconforming items and nonconformities per 100 items (normal inspection)	6,5	Ac Re	⟨ ⊢					1					<u> </u>									_
and	-	Ac Re A						<u> </u>					<u> </u> -					<u> </u> 				
tems	0,4		7		_		Ţ	<u> </u>														<u> </u>
ing it	2,5	Ac Re	2 9	7 14	13 19	20 25	26 27	⊱					! <u> </u>					<u>!</u> I				_
form	1,5	Ac Re	7	5	13	17	18 19	6	4	19	52	27	_					<u> </u>				
ncon			5 1	8	10 8	12 12	13 18	7 2	10 7	13 13	17 20	19 26	6	4	19	ın		l 				_
t no	1,0	Ac Re	0	8	6	9	12 1	-	4	₩	12 1	18 1	8	7 14	13 1	20 25	26 27	⊱				_
ercer	9,65	Ac Re	4	9	80	6	10	2	æ	10	12	2 13	7	10	13	17	3 19	6	4	3 19	25	3 27
in Pg			4 0	5	9	7	7	4	9	9 8	6	10 12	5	8	10 8	12 12	13 18	7 2	10 7	13 13	17 20	19 26
Å,	0,40	Ac Re	*	-	0	4	9	0	_	ო	5	თ	0	က	9	თ	12	-	4	∞	12	13 18
oit, A	0,25	Ac Re	#	0	4	2 5	5	4	- 2	2 6	4 7	2 9	4	9 _	3	5	9	0 5	3 8	9	12	12 13
ī.	0,15		2	<u>س</u>	<u>ه</u>	ю 0	4	6	<u>ო</u>	4	22	2	4	2	9	<u>-</u>	7	4	9	8	6	10
quali	⊢	Ac Re	#	0	0	-	က	#	0	-	7	4	#	-	Ø	4	9	0	-	ო	Ŋ	6
nce	0,10	Ac Re	# 2	0	0	0	-	#	0	0	1 3	3 4	_#	0	4	2 5	4 5	#	5	2 6	4 7	6 7
epta	0,065	Ac Re					 >	2	7	0	8	8	2	ო	ო	က	4	6	က	4	r.	'n
Acc								#	0	0	0	-	# 7	2	2 0	2	3	#	0	-	3	4
	0,040	Ac Re	\forall				_					⇒	*	0	0	0	_	#	0	0	-	ص
	0,025	Ac Re			*			⊱				_					⇒	1 2	2	2	2	2
		Ac Re A				_		-										#	0	0	_	_
	0,015	Ac					\Rightarrow			*			Ţ									_
	0,010	Ac Re	_					_				⇒			*			ᡧ				—
þ			rð.		ιΩ	•	r.	0				8	5	_	22	8	75	0	8	8	8	<u> </u>
Cumu-		size	125	250	375	200	625	200	400	009	800	1 000	315	630	945	1 260	1 575	200	1 000	1 500	2 000	2 500
	Sample size		125	125	125	125	125	200	200	200	200	200	315	315	315	315	315	500	200	200	200	200
								<u> </u>														
	Sample		First	Second	Third	Fourth	Ħ	First	Second	Third	Fourth	₽	First	Second	Third	Fourth	Εİ	First	Second	Third	Fourth	Ē
Sample		Į.			_										~							
Sarr	size	letter			z					о.					Ø					ш		

🖔 = Use the first sampling plan below the arrow. If sample size equals, or exceeds, lot size, carry out 100 % inspection.

 \triangle = Use the first sampling plan above the arrow.

Ac = Acceptance number

Re = Rejection number

* = Use the corresponding single sampling plan (or alternatively use the double sampling plan below, where available).

++ = Use the corresponding double sampling plan (or alternatively use the mutliple sampling plan below, where available).

= Acceptance is not permitted for this sample size.

Table 4-B — Multiple sampling plans for tightened inspection (Master table)

\Box	Τg	æ	1		1	i					i					i					i				
	1 000	Ac Re	*	‡	7	i .					i					-					Ï	-			_
	650	Ac Re	*	‡	‡	⟨⊢					<u>i</u>					<u>i</u>					<u>i</u>				_
	400	Ac Re	*	+	‡	15	3 25	35	3 45	53	<u></u>					<u> </u>									
	<u> </u>	Re	-	-	 	10 6	17 16	24 26	31 38	35 52	15 4	25	35	45	53	1		-			-				
(F)	250	Ac	*	‡	+	က	9	17	25	34	9	16	26	38	52	╚					i				
pecti	150	Ac Re	*	‡	‡	4	6 12	11 17	16 22	23 24	3 10	10 17	17 24	25 31	34 35	⊱	-				<u>i </u>				_
d ins	100	Ac Re	*	‡	‡	9	6	12	15	16	8	12	17	22	24	4					<u>i </u>				_
	65	Ac Re	*	‡	‡	0	7	6	=======================================	11 15	9	9	12 11	15 16	16 23	8	12	17	52	24					
s (tigh		Re Ac	Ļ		-	0	2	6 4	2	7 10	0	7 3	7	#	11 15	1-9	9	12 11	15 16	16 23	8	~	17	- 2	4
item	9	Ą	*	‡	‡	#	-	8	4	9	0	7	4	9	10 1	0	<u>ი</u>	7 1.	=	15	-	6 12	-	16 22	23 24
95	25	Ac Re	➾	‡	‡	#	0 3	4	2 5	4	4	1	2 6	7 4	2 9	4	2 7	4	6 11	10 11	9 0	ი ი	7 12	11 15	15 16
ed se	15	Ac Re	_	⇌	‡	2	₀	က	ო	4	က	က	4	2	2	4	'n	9	7	7	4	7	6	Ξ	=
rmitie	2	Ac Re A	_		一	7	2	0	2	2	7	3	3	3	4	#	3	4 2	72	2	4	2	9	7 6	7 10
confc			E	<u> </u>	=⁄ 	#	0	0	0	-	#	0	0	-	<u>ო</u>	#	0	-	3	4	#	-	5	4	9
Acceptance quality limit, AQL, in percent nonconforming items and nonconformities per 100 items (tightened inspection)	6,5	Ac Re	❖	*	_	! !				\Rightarrow	#	0	0 2	0	1	#	0	0	-	ω	#	0	1 4	2 5	4 5
s and	4,0	Ac Re	=	➾	*	_									⇒	# 2	0 2	0 2	0 2	1 2	# 2	0 3	0	3	3 4
) item	2,5	Ac Re	_		<u>'</u> ⇒>			*												<u>-</u> >	2	7	7	N N	7
rming	1,5	Ac Re A																			#		0		_
confo			-							= >	<u> </u>		*												⇒
t non	1,0	Ac Re	_								<u>!</u>			-	⇒			*			_	···			⇒
ercen	0,65	Ac Re	=								<u>i </u>									⇒			*		
i,	0,40	Ac Re																			<u> </u>				_>
AQL			_		_	—					<u> </u> 					 					<u> </u>				_
limit,	0,25	Re Ac Re														i									
ality	0,15	Ac B				<u> </u>					<u> </u>					!	-				<u> </u>		-	_	⇒∤
nb eo	0,10	Ac Re	_								<u></u>														⇒
) ptan	0,065	Ac Re														 									7
Acce			_																						7
	0,040	Ac Re																							\Rightarrow
	0,025	Ac Re	_		닉						<u> </u>					<u></u>				-					⇒
	0,015	Ac Re			_																				<u> </u>
	0,010	Ac Re A											_												
\bigsqcup																									=
Cumu-	lative sample	size				7	4	9	80	10	3	9	6	12	15	5	9	15	20	25	80	16	24	32	9
	Sample					2	7	Ø	0	2	3	က	က	6	3	2	2	က	က	5	80	80	80	80	8
	Sample					First	Second	Third	Fourth	Fiffh	First	Second	Third	Fourth	Fifth	First	Second	Third	Fourth		zţ	puo	į.	Fourth	ا ۽
<u>o</u>						ΙĪ	Sec	두	Ğ	Ĭ	ίΪ	Sec	<u>£</u>	Ŋ.	Œ.	Ē	Sec	Ĕ	F	Ē	First	Second	Third	P.	Fift
Sample	size	letter	٧	В	٥			۵					ш					ட					g		

^{🖔 =} Use the first sampling plan below the arrow. If sample size equals, or exceeds, lot size, carry out 100 % inspection.

riangle = Use the first sampling plan above the arrow.

Ac = Acceptance number

Re = Rejection number

^{* =} Use the corresponding single sampling plan (or alternatively use the double sampling plan below, where available).

^{++ =} Use the corresponding double sampling plan (or alternatively use the mutliple sampling plan below, where available)

^{# =} Acceptance is not permitted for this sample size.

© ISO ISO 2859-1:1999(E)

Table 4-B — Multiple sampling plans for tightened inspection (Master table) (continued)

0.040 0.065 0.10 0.15 0.25	0.025 0.040 0.065 0.10 0.15 0.25 0.40 0.65 1.0 1.5
0,015 0,025 0,040 0,065 0,10 0,15 0,25 0,40	0,025 0,040 0,065 0,10 0,15 0,25 0,40
Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re	Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re
*	*
\Rightarrow	\uparrow
*	*
	⇒
#	
*	*
	0
	\uparrow
# 2 #	# 2
0 2 0	7
*	2
0 2 1	
	1 2
	# 2 # 2
0 2 0 3 0	2 0 3
*	0 2 0
0 2 1 3 2	2 1 3

Use the first sampling plan below the arrow. If sample size equals, or exceeds, lot size, carry out 100 % inspection.

∴ = Use the first sampling plan above the arrow.

Ac = Acceptance number

Re = Rejection number

* = Use the corresponding single sampling plan (or alternatively use the double sampling plan below, where available).

++ = Use the corresponding double sampling plan (or alternatively use the mutiple sampling plan below, where available).

= Acceptance is not permitted for this sample size.

Table 4-B — Multiple sampling plans for tightened inspection (Master table) (concluded)

Survive surviv		1 000	Ac Re	\					<u>; </u>					<u>i</u>					i									_
Summy summy		_		1					<u> </u>					<u> </u>					+					\vdash				_
Sumple su		8		\ <u>\</u>					ļ					<u> </u>					!									
Sumple su		400	Ac Re	⟨					1					i i									_					
Figure 122 125 125 125 125 125 125 125 125 125		32		ج/					1					<u> </u>					_				_					_
Sample sample lative sample sa	lion)	⊢		H					<u>i</u>					<u>i </u>					<u> </u>					┢				
Sample sample lative sample sa	spect	15(♥					<u>:</u>										<u> </u>				_					
Sample sample lative sample sa	ed in	100	Ac Re						<u>: </u>					<u>: </u>					<u>:</u> :				_					
Sample sample lative sample sa	ighten	65		4			-							Ļ									—					_
Sample sample lative sample sa	ms (ti	6		4																-			_					_
Sample sample lative sample sa	00 ite	\vdash		\ \ \ -					<u>i </u>														_	\vdash				_
Sample sample lative sample sa	per 1			7					 					 									_	-				_
Sample sample lative sample sa	mities			\ <u>\</u>					i i										!				=					
Sample sample lative sample sa	onfor	₽		₽					<u>. </u>					_									_			,		
Sample sample lative sample sa	nonc	6,5	Ac Re	 					<u>!</u> !					<u>! </u>	*				<u>!</u>				_					
Sample sample lative sample sa	s and	4,0		⟨																			=					_
Sample sample lative sample sa) items	-		80		17	22	24	<u>_</u>																			
Sample sample lative sample sa	rming			9				16	8	12	17	22	24	1					<u> </u>				_					_
Sample sample lative sample sa	confo			\vdash			=	_	-			16	23	3 4	2		Ŋ						_					_
Sample sample lative sample sa	t non	Ь—		l l								Ξ	15	<u> </u>		Ξ	16	23	ᡧ				_					
Sample sample lative sample sa	ercen	0,65	Ac Re	1										1					- 8			16 22						
Sample sample lative sample sa	, in	0,40	Re			4			1	2		7	7			6	Ξ	Ξ		6	72	15	16					
Sample sample lative sample sa	AQL	<u> </u>		-		-			₩	9																		
Sample sample lative sample sa	limit,	_							_					\vdash	~ +				├			9		_				_
Sample size sample sample size sample sample size sample sample size sample sample solution size sample sample sample sample size sample sample sample sample sample solution size size Ac Re Ac			Ac	#	0	0	0	-	#	0	0	_	ო	#	0		8	4	#	-	8	4	9					
Sample size sample sample size sample sample size sample sample size sample sample solution size sample sample sample sample size sample sample sample sample sample solution size size Ac Re Ac	nce d	0,10	Ac Re	=				➾						l														
Sample size sample sample size sample sample size sample sample size sample sample solution size sample sample sample sample size sample sample sample sample sample solution size size Ac Re Ac	eptar	990'		_									 ⇒	1		~	7		2	က	ო							
Sample size sample conto conto conto size sample size sample conto	Acc												_	#	0	0	0		┡—									_
Sample size sample lative 0,010 0,015 size sample Ac Re Ac						*												⇒	#	0	0	0	-	<u> </u>				
Sample sample sample sample sample sample sample sample sample solve solve sample sample sample sample sample sample solve sol			Ac B					\Rightarrow			*												⇒					٠
Sample sample sample sample sample sample sample sample sample solve solve sample sample sample sample sample sample solve sol		0,015	Ac Re						<u> </u>				⇒			*			\downarrow				<u> </u>					
Sample size Cumusize First 125 125 Second 125 250 Third 125 250 First 200 600 First 200 600 First 200 600 First 200 800 First 200 800 First 315 625 Fourth 315 315 Fourth 315 345 First 500 1000 First 500 200 First 500 100 Fourth 500 200 First 800 800 Fourth 800 2400 First 800 2400 Fourth 800 2400 First 800 3200 Fith 800 3200									 									⇒			*							
Sample size size size size Second 125 Fourth 125 First 200 First 200 First 200 First 200 First 315 Fifth 315 Fifth 500 Fourth 500 First	-ħu			55	O	5.	<u>0</u>	55	g	2	<u> </u>	<u> </u>	8	5		25	09	75	0	8		8	00	o O	8	8	8	
Sample Sample First Second Third First Second Third First Second Third First Second Third First Second Third Fourth Fifth First Second Third Fourth Fifth First Second Third Fourth Fifth First Second Third Fourth Fifth First Second			. <u>r</u>						<u> </u>										35							_		Č
				125		125	125	125	200		200	200	200	315		315	315	315	200		200	200	200	800		800	800	8
		Sample		First	econd	Third	Fourth	Fifth	First	puoses	Third	Fourth	Fifth	First	puose	Third	-ourth	Fifth	First	puose	Third	-ourth	Fifth	First	puose	Third	-ourth	4
	Sample		ətter			z				<i>U)</i>					(v)	o	_			σ)	œ				<u> </u>	s		

🖔 = Use the first sampling plan below the arrow. If sample size equals, or exceeds, lot size, carry out 100 % inspection.

△ = Use the first sampling plan above the arrow.

Ac = Acceptance number

Re = Rejection number

* = Use the corresponding single sampling plan (or alternatively use the double sampling plan below, where available).

++ = Use the corresponding double sampling plan (or alternatively use the mutiple sampling plan below, where available).

= Acceptance is not permitted for this sample size.

Table 4-C — Multiple sampling plans for reduced inspection (Master table)

	Τg	a	Ι	Т	1	i	i	i					i					i				
	1 000	Ac Re	*	*	₹	: 	! =	i					<u>:</u>					i				_
	650	Ac Re	*	*	*	⟨		<u> </u>					1					<u>:</u>				_
	400	Ac Re		*	*	‡	_ 	<u> </u>					Ĺ					i				_
	-		-	ļ	<u> </u>	H	7						i					<u> </u>				_
<u></u>	250	Ac Re	*	*	*	‡	‡	ᡧ					i		-			<u> </u>				
ection	150	Ac Re	*	*	*	‡	‡	⟨⊨					<u> </u>					:				_
d insp	901	Ac Re	*	*	*	‡	‡	╚										<u> </u>				_
aduced	65	Ac Re	*	*	*	‡	‡	2	80	9	12	13	\ \		~~~			<u>i</u>		,		
ems (re	40	Ac Re	*	*	*	‡	‡	0	7	9	11	11 12	r.	σ	9	12	13	\ \				
100 it	25	Ac Re A	*	*	*	‡	‡	0	9	7	8	8 10	4	7	9	11	11 12	2	80	9	12	5
es per	5	Ac Re Ac		<u> </u>	*	† †	‡	3	4	2	5	6 7	0	6	7	9	8 10	4	7 3	9	11	11 12
formitie	9	Ac Re Ac				++	‡	# E	ۍ ح	4	3	5	3	4	5	5	6 7	0	9	7	8	8
ty limit, AQL, in percent nonconforming items and nonconformities per 100 items (reduced inspection)	6,5	Ac Re Ac			<u> </u>	<u> </u>	+ + + +	5	0	ъ Т	3	4	#	ى -	4	2	5	3	4	5	4	6 7
and n	4,0	Ac Re Ac	♦	*	♦			5	0	2	2	3	5	9	3	3	4	# E	3	4	5	5
) items	2,5	Ac Re Ac	7	7	*	\ \	_	#	0	0	0	<u>_</u>	7	2	2	2	2	5	3	3	3	4
orming	1,5	Ac Re Ac				* 4	♦					_	#	0	0	0		7	2	2 0	2	2
ncon	<u> </u>	Ac Re Ac		<u> </u>				_					-				~	#	0	0	0	<u>-</u>
ent no	5 1,0) 		-	*	Ų				_	<u> </u>					ı 				⇒
n perc	0,65	e Ac Re					\vdash	ļ.,.		*			⊱				<u> </u>					\Rightarrow
Å,	0,40	e Ac Re									_	\Rightarrow			*			╚				_
imit, /	0,25	Ac Re			_	==	_						<u>:</u>				\Rightarrow			*		
	0,15	Ac Re						=					<u> </u>					<u> </u>				\Rightarrow
Acceptance qual	0,10	Ac Re										-					-	 				- >
ptano					i		i						i 					1				
Acce	0,065	Ac Re																				⇒
	0,040	Ac Re				_	_						<u></u>					<u></u>				⇒
	0,025	Ac Re	l																			 ⇒
						 												i				-V
	0,015	e Ac Re					i															⇒
	0,010	Ac Re			<u>i</u>	<u>i</u>	<u>i</u>		===													⇒
Oumu-	lative sample	size						61	4	9	80	9	3	9	o	12	15	2	9	15	50	25
	Sample size]						2	2	7	2	2	က	ო	က	က	3	5	ഗ	S	ß	5
	Sample							First	Second	Third	Fourth	FIFF	First	Second	Third	Fourth	Fifth	First	Second	Third	Fourth	Fifth
Sample		letter	∢	ш	O	۵	ш			ட				3,	g				- J	I		
					i																	

🖒 = Use the first sampling plan below the arrow. If sample size equals, or exceeds, lot size, carry out 100 % inspection.

 \diamondsuit = Use the first sampling plan above the arrow.

Ac = Acceptance number

Re = Rejection number

* = Use the corresponding single sampling plan (or alternatively use the double sampling plan below, where available).

++ = Use the corresponding double sampling plan (or alternatively use the mutliple sampling plan below, where available).

= Acceptance is not permitted for this sample size.

Table 4-C — Multiple sampling plans for reduced inspection (Master table) (continued)

Γ		gT	ا ۾	<u></u>														i					\Box
		1 000	Ac Re	\leftarrow				ij					ij					i					_
		650	Ac Re	\				<u>i</u>	=			-	<u> </u>		_			<u>!</u>					-
		400	Ac Re	\leftarrow				<u> </u>					<u> </u>					<u> </u>					_
		250	Ac Re A	<u> </u>				- 1 - 1				-	-					- ! - !					_
	(no	-+		<u> </u>				i					ij					i					4
	specti	150	Ac Re	←		٠		-					-			-		i					
	ed ins	100	Ac Re	\				- i					i		=:			<u> </u>					_
	(reduc	65	Ac Re	U				- 1						-12									-
	tems (64	Ac Re	़				i					4					<u> </u>		-	-		
	100 i	25	Ac Re	4			-	ļ					_										_
	ed se	15	Ac Re	ß	00	9	12	2 13	Ų									_					_
	ormiti	£	Ac Re A	4 0	7	6	11 9	11 12	2	®	9	57	13	<u> </u>									_
	nconf			4 0	9	7	8	8 10	4 0	7	9	11 9	11 12	5 5	80	9	12	5					_
	ou pu	6,5	e Ac Re	0	-	۲۵	4	7	0 1	7	4	9	10	0 1	6	9	6	12	<u>-</u>		우	12	13
	ims ai	4,0	Ac Re	#	1	2	3	5 6	0 4	-	2 7	4	7 8	0 4	2 7	4	6 11	10 11	0	က	9	6	12
	ing ite	2,5	Ac Re	#	0	4	2 5	4 5	#	4	2 5	3	5 6	0 4	1	2 7	4	7 8	0 4	2 7	4	6 11	10 11
	nform	1,5	Ac Re	# 2	0	0 3	1 3	3 4	# 3	0 3	4	2 5	4 5	# 3	4	2 5	3 2	5 6	0 4	9	2 7	8	7 8
	nonco	1,0	Ac Re	2 #	0	0 2	0 2	1 2	2 #	e 0	е 0	-3	3 4	e #	0 3	4	2 5	4 5	#	4	2 5	3	5 6
	rcent	9,0	Ac Re					— ⇒	2 #	0 2	0 2	0 2	2	2 #	0	8	ო	3 4	# 3	8 0	4	2 2	4 5
	Acceptance quality limit, AQL, in percent nonconforming items and nonconformities per 100 items (reduced inspection)	0,40	Ac Re A										 ⇒	2	7	7	2 7	2	2	ဇ	က	ო	4
	, AQL	0,25 0	Ac Re Ac					_	<u> </u>			,		#	0	•	_	1 ح	5	2	2 0	2	2 3
.	/ limit	2	Re Ac	7										i 				~	*	0	0	0	1
	qualit	0,1	Ac			*			₹				=										☆
	ance	0,10	Ac Re			::		\Rightarrow			*			ᡧ				_					\Rightarrow
	ccept	0,065	Ac Re						<u>i</u> i				⇒			*			\forall				_
	⋖	0,040	Ac Re						<u> </u>									⇒			*		
		0,025	Ac Re											<u> </u>			-						⇒
		0,015 0	Ac Re		_				 					! ! !					<u> </u>				— ⇒
		0,010 0,	Ac Re Ac						<u> </u>					!					i I I				_⁄~
																		_	<u> </u>			~	<u>~</u>
	Cumu-		size	80	16	24	32	4	13	56	-SE	52	65	20	4	9	8	9	32		96	128	160
		Sample size		8	8	8	89	80	13	13	13	13	13	50	50	20	20	20	32	32	32	32	32
		Sample		First	Second	Third	Fourth	Ħ H	First	Second	Third	Fourth	ŧ	First	Second	Third	Fourth	Fift	First	Second	Third	Fourth	Fifth
	Sample		letter								¥										Σ		
1	S			<u> </u>					<u> </u>					1					Щ.				

^{⇒ =} Use the first sampling plan below the arrow. If sample size equals, or exceeds, lot size, carry out 100 % inspection.

 $[\]triangle$ = Use the first sampling plan above the arrow.

Ac = Acceptance number

Re = Rejection number

^{* =} Use the corresponding single sampling plan (or alternatively use the double sampling plan below, where available).

^{++ =} Use the corresponding double sampling plan (or alternatively use the mutliple sampling plan below, where available).

^{# =} Acceptance is not permitted for this sample size.

Table 4-C — Multiple sampling plans for reduced inspection (Master table) (concluded)

	1 000	Ac Re	4					Ĭ														_
	\vdash							<u>i</u>										<u> </u>				
	650	Ac Re	⊹					1					<u>' </u>					<u> </u> 				_
	400	Ac Re	4															<u> </u>				
	-		`					1					-					!				
_ ا	250	Ac Re	⟨		-			i				-	i		=	=		i				—
ction	150	Ac Re	₽					<u> </u>					<u> </u>					<u> </u>				
uspe	-							 					<u> </u>					1				
Sed i	9	Ac Re	\ <u>{</u>										-									_
reduc	65	Ac Re	 					<u>!</u>					<u> </u>					<u> </u>				_
ı) su	40	Ac Re	4					L					 					 				
0 ite	4		7										<u> </u>					1				
er 10	52	Ac Re	⟨					1					<u> </u>					<u>: </u>				_
es be	15	Ac Re	⟨-															i				_
iği.		-	-					<u> </u>					<u> </u>					<u> </u>				_
onfo	٩	Ac Re	₽										T									_
ity limit, AQL, in percent nonconforming items and nonconformities per 100 items (reduced inspection)	6,5	Ac Re	 					-					<u> </u>					<u> </u>				_
and	4,0	Ac Re	1					<u> </u>					<u>i </u>					<u>i </u>				
ems	4	1	7		_			F					!									
ing it	2,5	Ac Re	0 5	3	6 10	9 12	12 13	⊱					<u> </u> 					<u> </u> 				_
form	1,5	Ac Re	4	7	6	Ξ	Ξ	2	œ	9	12	13	<u></u>									_
Loon	<u> </u>		0	9	4	9	9 10	0	7 3	9	1 6	11 12	5	80	10	12	13	 				
] i	1,0	Ac Re	0	-	2	4	7	٥	8	4	1 9	10	0	က	9	9	12 1	ᡧ		-		_
ercer	0,65	Ac Re	e #	4	2 5	3 5	5 6	4	9	2 7	8	7 8	4	2 7	9	Ξ	10 11	0 5	3 8	9	12	12 13
in	0,40	Ac Re	60	ю г	4	ro C	2,	8	4	- Cr	2	9	4	9		8		4	~	9	-	Ξ
Å	<u> </u>		#	0	-	01	4	#	-	0	က	Ŋ	0	-	7	4	7	0	8	4	9	9
nit, A	0,25	Ac Re	# 2	0	0 3		3 4	#	0 3	4	2 5	5	#	4	2 5	3	5 6	4	1 6	2 7	80	7 8
ii Yi	15	æ	2	8	N	8	01	8	က	က	ო	4	က	က	4	ß	Ŋ	ю	4	S.	2	9
		e Ac	#:	0	_	0	-	7	0	0		<u>е</u>	#	0		3	4	#		2	<u>ო</u>	5
Acceptance qua	0,10	Ac Re					⇒	#	0 2	0	0 2	1	# 2	0	0	-	ر د	#	0	-	2 5	4
Septa	90'0	Ac Re										<u></u> ⇒	7	2	8	0	8	2	ო	က	ო	4
Acc			1										#	0	0	0	_	7	2	2	2	2
	0,040	Ac Re	Î fî				_										⇒	#	0	0	0	-
	0,025	Ac Re			*			ᡧ					<u>: </u>					<u>:</u>				_
	0,015	Ac Re	_				_								,			I I				
		9 Ас											7					-				
	0,010	Ac Re	_									⇒			*		i	⊱				_
Cumu-	lative sample		20	100	150	200	250	80	160	240	320	400	125	250	375	200	625	200	400	009	800	1 000
3		S		_	_	Ø	2		-	· (i		4	<u> </u>	Ñ	60	വ്	9	12	4	<u>ښ</u>	<u></u> ळ	7
	Sample size		20	20	20	20	20	80	8	8	80	80	125	125	125	125	125	200	200	200	200	200
				Ē	Q	₽			<u>p</u>	.	£	_	#	<u>a</u>	-	<u></u>		<u> </u>				
L	Sample		First	Second	Third	Fourth	Fifth	First	Second	Third	Fourth	Fifth	First	Second	Third	Fourth	Fifth	First	Second	Third	Fourth	Fifth
Sample	size	itter		-	z					۵					o					α.		
L &	ν ö	<u></u>																				

S = Use the first sampling plan below the arrow. If sample size equals, or exceeds, lot size, carry out 100 % inspection.

 \triangle = Use the first sampling plan above the arrow.

Ac = Acceptance number

Re = Rejection number

* = Use the corresponding single sampling plan (or alternatively use the double sampling plan below, where available).

++ = Use the corresponding double sampling plan (or alternatively use the mutliple sampling plan below, where available).

= Acceptance is not permitted for this sample size.

Table 5-A — Producer's risk for normal inspection

(in percent of lots not accepted for single sampling plans)

	1 000	1,35	0,627			<u> </u>							T					Ī						_
	650 1	1,41	0,979	2,17				+					\vdash			+					+			
	-	-			ာ	<u> </u>		+					-			+		\vdash			+			_
<u>ج</u> ا	0 400	7 1,73	3 0,607	1,35	5 1,73	_							L			+					-		_	_
ection	250	1,37	7 1,03	3 0,940	7 1,35	9 2,17							L					L						
l insp	150	1,19	0,667	1,03	0,607	0,979															L			
orma	9	1,66	1,19	1,37	1,73	1,41																		
ms (r	65	4,31	1,48	1,83	1,77	2,62	1,41																	
00 ite	40	4,74	3,38	1,66	1,68	1,77	1,73	1 20	24.															
per 1	25	9,02	4,05	3,83	1,66	1,83	1,37	173	2	0,940														
mities	15	9,45*	7,54	4,05	3,38	1,48	1,19	40	5	1,03	\dashv	0,607									T			_
limit, AQL, in percent nonconforming items and nonconformities per 100 items (normal inspection)	10	7,15*	9,45* 9,39*	9,02 8,15	4,74 3,81	4,31 3,42	1,66	1,68	1,17	1,37	0,935	1,73	0,940	0,626		\dagger					T			_
nou p	6,5	12,2	6,85*	10,8* 10,8*	9,63 9,10	5,41	4,31	_	1,58		1,47	1,77	1,95	1,60	1,41	2								
ns and	4,0		11,3 (7,15*	10,5* 10,5*	9,63 9,32	4,74	+-	3,77		1,44	1,68	1,37	1,19	1,73	+	0,883	 						4
ig iten	2,5			11,8 7	7,15* 1 7,16* 1	10,8*	9,02	+	4,52		3,62	1,66	1,48	1,36	1,37	+		0,940	0,857		\dagger			1
ormir	5,1				11,3 7	6,85* 1 6,86* 1	9,45* 9		8,30	4,05		3,38	1,25	1,18	1,19 1			_	0,971 0,	0,607				\dashv
ncon	0,1					12,2 6, 12,2 6,	7,15* 9,		10,5* 8		8,94	4,74 3, 4,66 3,	3,83	3,74	1,66 1,	_			1,32 0,	1,73 0,0		0,907		\dashv
ent no	0,65					1 1	12,2 7,		7,64* 10		_		┿┈	_		+		-	1,79 1,		ٻ		= 9	_ ©
perce	<u> </u>						5 5		\rightarrow	5* 10,8*	_	5* 9,63	2 4,92	9 4,87	4 4,31	+		_		1,77	+-		_	1,38
al, in	5 0,40							12,0	12,0		ردر, ک	5* 10,5* 5* 10,5*		* 8,99	4,74	+		\vdash	1,63	1,68	┿			7,7
nit, A(0,25								_	1,8	<u>-</u>	7,15*	10,1	* 10,1*	9,02	-		ļ	3,81	1,66	+		-	ر ار
	0,15	-										<u>τ</u> τ ε, ε,	6,41*	_	9,45*	5 α	8,19	4,05	_	3,38	L	<u> </u>	-, -	_
e dna	0,10												11,8	11,8	7,15*		10,2	9,02		4,74	3.83	3,82	1,66	0
Acceptance quality	0,065														12,2	7,24	7,44*	10,8*	10,8*	9,63	4.92	4,92	4,31	₹,5 S
Acce	0,040																. L	7,15*	7,15*	10,5*	9,02	9,02	4,74	4,74
	0,025								1							T		1,8	$\overline{}$	7,15*	_		9,02	3,02
	0,015							T			1					\dagger				1,3	-		9,45*	
	0,010							-			\dagger					+					-	11,8 6	7,15* 9	
Sample	size 0	2	က	2	80	13	20	32	1	20	+	80	7.5	3	500	+	315	Q.	,		+			$\frac{1}{1}$
		,,				-	ď	m		ū	-	αÓ	-	-	28	_	3	5.	5	800	;	1 250	2 000	$\frac{1}{2}$
Sample	code	٧	ω	O	۵	ш	ш	5		I		7	7	4	_		Σ	z	:	۵.	(3	æ	

NOTES

1 The producer's risk is the probability of nonacceptance for lots of AQL quality.

2 Upper entries are for inspection for nonconformities per 100 items and are based on the Poisson distribution. Lower entries are for inspection for percent nonconforming and are based on the binomial distribution.

3 Superscript * denotes that the value is for the optional fractional acceptance number sampling plan (see Table 11-A).

© ISO ISO 2859-1:1999(E)

Table 5-B — Producer's risk for tightened inspection

(in percent of lots not accepted for single sampling plans)

NOTES

¹ The producer's risk is the probability of nonacceptance for lots of AQL quality.

² Upper entries are for inspection for nonconformities per 100 items and are based on the Poisson distribution. Lower entries are for inspection for percent nonconforming and are based on the binomial distribution.

³ Superscript * denotes that the value is for the optional fractional acceptance number sampling plan (see Table 11-B).

Table 5-C — Producer's risk for reduced inspection

(in percent of lots not accepted for single sampling plans)

	1 000	1,35	1,35														T
	650	1,41	1,41	1,41													
	400	1,73	1,73	1,73	0,607												
ction)	250	1,37	1,37	1,37	1,03	0,940											T
inspe	150	1,19	1,19	0,380	0,667	1,03											
limit, AQL, in percent nonconforming items and nonconformities per 100 items (reduced inspection)	100	1,66	1,66	0,453	98,0	1,37											
ms (re	65	4,31	4,31	1,07	0,396	0,629	1,77										
00 ite	40	4,74	4,74	0,908	0,775	0,453	0,571	1,77									
per 1	25	9,02	9,02	1,44	0,729	0,912	0,453	0,629	1,37								
rmities	15	9,45*	9,45*	3,69	1,09	0,729	0,775	0,396	0,380	1,04							
confo	9	7,15* 7,19*	7,15* 7,19*	4,72*	3,69	1,44	0,908		0,453	0,571	1,37						
nd nor	6,5	12,2 12,6	5,40* 5,48*	3,39* 3,29*	4,51* 4,33*	4,27 3,70	1,59		1,07	0,558	0,629	1,77					
ems ar	4,0		7,69	2,33*	2,94*	4,72* 4,61*	4,15		0,908	1,00	0,453	0,571	1,37				
ing ite	2,5			4,88	2,07*	3,16* 3,12*	4,72*		1,44	0,908	0,912	0,453	0,493				
onform	5,				4,40	2,07* 2,06*	2,94*			1,29		0,775		0,380	0,936		
nonce	1,0					4,88	2,33*		4,72*	4,15	1,44	0,908	0,912	0,453	0,518	1,37	
ercent	0,65						5,07	+	3,39* 3,38*	5,06*	4,27	1,59	0,957	1,07	0,513	0,629	1,77
L, in p	0,40							5,07	2,33*	3,30*	4,72*	4,15	1,44	0,908	0,942	0,453	0,571
it, AQI	0,25							ļ	4,88 4,88	2,33*	3,16*	4,72*	3,98 3,96	1,44	0,861	0,729 0,912 0,724 0,902	0,453
	0,15									4,69		2,94*	4 4	3,69	1,24	_	o o
e dna	5 0,10							<u> </u>			4,88	2,33*			4,03	1,44 1,43	
Acceptance quality	0 0,065											5,07	2,39*			4,27	1,59
Acce	5 0,040												4,88 4,88	2,33*	3,20*	4,72*	4,15
	5 0,025	•		_										4,88 4,88	2,26*	3,16*	4,72*
	0 0,015											_			4,62	2,07*	2,94*
	0,010															4,88	2,33*
Sample	size	Cl	7	7	ო	5	80	13	20	32	20	80	125	200	315	200	800
Sample size	code	∢	Ф	O	Δ	ш	L	ŋ	н	r	エ	7	Σ	z	۵	ø	Œ

NOTES

1 The producer's risk is the probability of nonacceptance for lots of AQL quality.

2 Upper entries are for inspection for nonconformities per 100 items and are based on the Poisson distribution. Lower entries are for inspection for percent nonconforming and are based on the binomial distribution.

3 Superscript * denotes that the value is for the optional fractional acceptance number sampling plan (see Table 11-C).

© ISO ISO 2859-1:1999(E)

Table 6-A — Consumer's risk quality for normal inspection

(in percent nonconforming for single sampling plans, for inspection for percent nonconforming)

	10	*0'69	*9'29	58,4	53,8	44,4	41,5	34,0	29,1	24,2	21,9						
	6,5	68,4	54,1*	39,8*	40,6	36,0	30,4	27,1	22,4	18,6	15,7	13,8					
	4,0		53,6	37,3*	27,0*	26,8	24,5	19,7	17,8	14,3	12,1	9,91	8,84				
	2,5			36,9	25,2*	17,5*	18,1	15,8	12,9	11,3	9,24	2,60	6,33	5,60			
ms	1,5				25,0	16,4*	11,8*	11,6	10,3	8,16	7,29	5,82	4,85	4,00	3,51		
Acceptance quality limit, AQL, percent nonconforming items	1,0					16,2	11,0*	*05'2	7,56	6,52	5,27	4,59	3,71	3,06	2,51	2,25	
nonconfo	59'0						10,9	*10,7	4,87*	4,78	4,20	3,31	2,92	2,34	1,92	1,61	1,41
, percent	0,40							6,94	4,54*	3,07*	3,08	2,64	2,11	1,85	1,47	1,23	1,00
mit, AQL	0,25								4,50	2,86*	1,97*	1,93	1,68	1,33	1,16	0,940	0,769
quality li	0,15									2,84	1,84*	1,24*	1,23	1,06	0,833	0,741	0,588
ceptance	0,10										1,83	1,16*	0,788*	0,776	0,664	0,534	0,463
Ac	0,065											1,14	0,735*	0,497*	0,485	0,425	0,334
	0,040												0,728	0,464*	0,311*	0,311	0,266
	0,025													0,459	0,290*	0,199*	0,194
	0,015														0,287	0,186*	0,124*
	0,010															0,184	0,116*
Sample	size	2	က	2	ω	13	20	32	50	80	125	200	315	200	800	1 250	2 000
Sample size	code	∢	В	O	۵	ш	Щ	ڻ ت	I	٦	Х		Σ	z	۵	a	Œ

NOTES

¹ At the consumer's risk quality, 10% of lots will be expected to be accepted.

² All the values are based on the binomial distribution.

³ Superscript * denotes that the value is for the optional fractional acceptance number sampling plan (see Table 11-A).

Table 6-B — Consumer's risk quality for tightened inspection

(in percent nonconforming for single sampling plans, for inspection for percent nonconforming)

	10	68,4	54,1*	39,8*	40,6	36,0	30,4	27,1	24,7	21,4	19,3							
	6,5		53,6	37,3*	27,0*	26,8	24,5	19,7	17,8	15,7	13,9	12,2						
	4,0			36,9	25,2*	17,5*	18,1	15,8	12,9	1,3	10,2	8,76	7,77					
	2,5				25,0	16,4*	11,8*	11,6	10,3	8,16	7,29	6,42	5,59	4,92				
SILL	1,5		~			16,2	11,0*	7,50*	7,56	6,52	5,27	4,59	4,09	3,54	3,08			
Acceptance quality limit, AQL, percent nonconforming items	1,0						10,9	*10'2	4,87*	4,78	4,20	3,31	2,92	2,59	2,21	1,98		
nonconfo	99'0							6,94	4,54*	3,07*	3,08	2,64	2,11	1,85	1,62	1,42	1,24	
, percent	0,40								4,50	2,86*	*76'1	1,93	1,68	1,33	1,16	1,04	0,888	
mit, AQL	0,25									2,84	1,84*	1,24*	1,23	1,06	0,833	0,741	0,649	
quality li	0,15										1,83	1,16*	0,788*	0,776	0,664	0,534	0,463	
ceptance	0,10											1,14	0,735*	0,497*	0,485	0,425	0,334	
Ac	0,065												0,728	0,464*	0,311*	0,311	0,266	
	0,040								-					0,459	0,290*	0,199*	0,194	
	0,025														0,287	0,186*	0,124*	0,123
	0,015															0,184	0,116*	
	0,010																0,115	
Sample	size	2	ო	5	ω	13	20	32	20	80	125	200	315	200	800	1 250	2 000	3 150
Sample	code letter	ď	ω.	O	۵	ш	Ш	Ø	I	J	×	٦	Σ	z	۵	Ø	Œ	တ

NOTES

¹ At the consumer's risk quality, 10% of lots will be expected to be accepted.

² All the values are based on the binomial distribution.

³ Superscript * denotes that the value is for the optional fractional acceptance number sampling plan (see Table 11-B).

Table 6-C — Consumer's risk quality for reduced inspection

(in percent nonconforming for single sampling plans, for inspection for percent nonconforming)

	9	*0,69	*0,69	73,2*	80,4	75,3	65,5	52,3	46,7	37,4	29,1				-		
													····				
	6,5	68,4	68,4*	*0,69	57,6*	58,4	53,8	44,4	36,1	30,6	24,7	18,6				··· •	
	4,0		68,4	68,4*	54,1*	39,8*	40,6	36,0	30,4	23,4	20,1	15,7	12,1				
	2,5			68,4	53,6*	37,3*	27,0*	26,8	24,5	19,7	15,4	12,8	10,2	7,60			
NS	1,5				53,6	36,9*	25,2*	17,5*	18,1	15,8	12,9	9,74	8,27	6,42	4,85		
ming iter	1,0				-	36,9	25,0*	16,4*	11,8*	11,6	10,3	8,16	6,29	5,21	4,09	3,06	
onconfo	0,65						25,0	16,2*	11,0*	7,50*	7,56	6,52	5,27	3,96	3,32	2,59	1,92
Acceptance quality limit, AQL, percent nonconforming items	0,40			:				16,2	10,9*	7,01*	4,87*	4,78	4,20	3,31	2,52	2,10	1,62
nit, AQL,	0,25								10,9	6,94*	4,54*	3,07*	3,08	2,64	2,11	1,59	1,31
quality lir	0,15									6,94	4,50*	2,86*	1,97*	1,93	1,68	1,33	0,997
ceptance	0,10			·							4,50	2,84*	1,84*	1,24*	1,23	1,06	0,833
Ac	0,065										1	2,84	1,83*	1,16*	0,788*	0,776	0,664
	0,040												1,83	1,14*	0,735*	0,497*	0,485
	0,025													1,14	0,728*	0,464*	0,311*
	0,015														0,728	0,460*	0,290*
	0,010															0,459	0,287*
Sample	size	7	01	2	ო	Ŋ	8	13	20	32	20	80	125	500	315	200	800
Sample size	code	∢	ω	O	۵	Ш	ш	g	I	ר	×		Σ	z	۵	ø	æ

NOTES

¹ At the consumer's risk quality, 10% of lots will be expected to be accepted.

² All the values are based on the binomial distribution.

³ Superscript * denotes that the value is for the optional fractional acceptance number sampling plan (see Table 11-C).

Table 7-A — Consumer's risk quality for normal inspection

(in nonconformities per 100 items for single sampling plans, for inspection for nonconformities per 100 items)

	1 000	1 916	1 793												•		
	650	1 409	1 277	1 076												••	
	400	1 006	939	992	672											**	
	250	770	671	564	479	414											
	150	589	514	403	352	295											
	100	464	392	308	252	217							· · · · · ·				
	65	334	309	235	193	155	141										
	40	266	223	185	147	119	101	88,1									
Str	25	194	177	134	116	90,5	0,77	62,9	56,4								
Acceptance quality limit, AQL, nonconformities per 100 items	15	125*	130	106	83,5	71,3	58,9	48,1	40,3	35,2							
ies per	2	116*	83,0*	77,8	66,5	51,4	46,4	36,8	30,8	25,2	22,5		***				
nformit	6,5	115	77,5*	49,8*	48,6	40,9	33,4	29,0	23,5	19,3	16,1	14,1					
, nonco	0,4		76,8	46,5*	31,1*	29,9	26,6	20,9	18,5	14,7	12,3	10,1	8,95				
it, AQL	2,5			46,1	29,1*	19,2*	19,4	16,6	13,4	11,6	9,42	7,70	6,39	5,64			:
ality lim	1,5				28,8	17,9*	12,5*	12,2	10,6	8,35	7,42	5,89	4,89	4,03	3,52		
nb eou	1,0		-			17,7	11,6*	7,78*	7,78	6,65	5,34	4,64	3,74	3,08	2,52	2,25	
Accepta	0,65						11,5	7,26*	4,98*	4,86	4,26	3,34	2,94	2,35	1,93	1,61	1,41
	0,40							7,20	4,65*	3,11*	3,11	2,66	2,12	1,85	1,47	1,23	1,01
	0,25								4,61	2,91*	1,99*	1,94	1,69	1,34	1,16	0,942	0,770
	0,15									2,88	1,86*	1,25*	1,23	3 1,06	5 0,835	0,742	685'0
	5 0,10										1,84	1,16*	0,731 0,738* 0,791*	0,461 0,465* 0,498* 0,778	3 0,665	5 0,534	4 0,464
	0 0,065	-										1,15	1 0,738	,* 0,498	* 0,48(0,426	4 0,334
	5 0,040												0,73	1 0,465	* 0,311	0,311	5 0,334
	15 0,025										-			0,46	0,288 0,291* 0,311* 0,486	0,186* 0,199*	5* 0,266
	0,015														0,28	4 0,186	0,116* 0,125*
<u>o</u>	0,010		· · · · · · · · · · · · · · · · · · ·			••••								-		0,184	
Sample	size	۵	က	သ	ω	13	50	32	20	80	125	200	315	200	800	1 250	2 000
Sample	code	∢	Δ.	٥	٥	ш	LL	ڻ ص	I	٦	×	_	Σ	z	۵	o	Œ

NOTES

1 At the consumer's risk quality, 10% of lots will be expected to be accepted.

2 All the values are based on the Poisson distribution.

3 Superscript * denotes that the value is for the optional fractional acceptance number sampling plan (see Table 11-A).

Table 7-B — Consumer's risk quality for tightened inspection

(in nonconformities per 100 items for single sampling plans, for inspection for nonconformities per 100 items)

	1 000	1 748	1 683													-		
	650	1 238	1 165 1 683	1 010														
	400	688	825	669	631													
	250	650	593	495	437	388												
	150	464	433	356	606	569										-		
	100	334	309	260	222	190							****					
	65	266	223	185	162	137	124											
	64	194	177	134	116	8	6,88	77,4			_							
S	25	125*	130	901	83,5	71,3	029	55,6	49,5									
Acceptance quality limit, AQL, nonconformities per 100 items	15	116*	83,0*	8,77	66,5	51,4	46,4	40,6	35,6	30,9								
s per 1(2	115	77,5*	49,8*	48,6	40,9	33,4	29,0	26,0	22,2	19,8							
ormitie	6,5		76,8	46,5*	31,1*	29,9	26,6	20,9	18,5	16,2	14,2	12,4						
oncon	4,0			46,1	29,1*	19,2*	19,4	16,6	13,4	11,6	10,4	8,89	7,86					
AQL, r	2,5				28,8	17,9*	12,5*	12,2	10,6	8,35	7,42	6,50	5,64	4,95				\neg
ity limit,	1,5					17,7	11,6*	7,78*	7,78	6,65	5,34	4,64	4,13	3,56	3,09			
ce qual	1,0						11,5	7,26*	4,98*	4,86	4,26	3,34	2,94	2,60	2,22	1,98		
ceptan	9,0							7,20	4,65*	3,11*	3,11	2,66	2,12	1,85	1,62	1,42	1,24	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0,40								4,61	2,91*	1,99*	1,94	1,69	1,34	1,16	1,04	0,889	
	0,25									2,88	1,86*	1,25*	1,23	1,06	0,835	0,742	0,464 0,650 0,889	
	0,15										1,84	1,16*	3,791*	0,778	0,665	0,534	0,464	
}	0,10										:	1,15	0,731 0,738* 0,791*		0,486	0,426	0,334	
	0,065				-								0,731	0,461 0,465* 0,498*	0,288 0,291* 0,311* 0,486	0,311	0,266	
	0,025 0,040 0,065													0,461	0,291*		0,194	
	0,025														0,288	0,184 0,186* 0,199*	0,125*	0,123
	0,015															0,184	0,115 0,116* 0,125*	
	0,010																0,115	
Sample	size	α	က	5	8	13	20	32	20	80	125	200	315	200	800	1 250	2 000	3 150
Sample size	code letter	ď	m	O	۵	ш	Щ	Ø	I	J	×	_	Σ	z	۵.	a	Œ	တ

NOTES

1 At the consumer's risk quality, 10% of lots will be expected to be accepted.

2 All the values are based on the Poisson distribution.

3 Superscript * denotes that the value is for the optional fractional acceptance number sampling plan (see Table 11-B).

Table 7-C — Consumer's risk quality for reduced inspection

(in nonconformities per 100 items for single sampling plans, for inspection for nonconformities per 100 items)

	1 000	916	1 916														
	650 1	1 409 1	1 409 1	1 409					····								
	400	1 006 1	1 006 1	1 006	626				****								
	250 4	770 1	770 1	770 1	671 8	264											
	150 2	589 7	289 7	650 7	514 6	403 5							<u>.</u>				
	100	464 5	464 5	527 6	433 5	308											
	65 10	334 46	334 46	400 5%			193								·-		
					6 351	1 260		6									
	40	,* 266	4 266	334	3 266	211	162	119									ļ
ems	25	194*	194	566	223	160	132	9	0,77,0			-					
100 it	15	125*	125*	194	177	134	6,66	81,0	65,0	48,1							
ies per	. 2	116*	116*	125*	130	106	83,5	61,5	52,7	40,6	30,8						
nformi	6,5	115	115*	116*	83,0*	77,8	66,5	51,4	40,0	32,9	26,0	19,3					
nonco	4,0		115	115*	77,5*	49,8*	48,6	40,9	33,4	25,0	21,1	16,2	12,3				
t, AQL,	2,5			115	76,8*	46,5*	31,1*	29,9	26,6	20,9	16,0	13,2	10,4	7,70			
lity limi	1,5				76,8	46,1*	29,1*	19,2*	19,4	16,6	13,4	66'6	8,43	6,50	4,89	100	
ce dna	1,0					46,1	28,8*	17,9*	12,5*	12,2	10,6	8,35	66,39	5,27	4,13	3,08	
Acceptance quality limit, AQL, nonconformities per 100 items	0,65						28,8	17,7*	11,6*	7,78*	7,78	6,65	5,34	4,00	3,34	2,60	1,93
A Ac	0,40							17,7	11,5*	7,26*	4,98*	4,86	4,26	3,34	2,54	2,11	1,62
	0,25							N	11,5	7,20*	4,65*	3,11*	3,11	2,66	2,12	1,60	1,32
	0,15									7,20	4,61*	2,91*	1,99*	1,94	1,69	1,34	666'0
	0,10										4,61	2,88*	1,86*	1,25*	1,23	1,06	0,835
	0,065		_								-	2,88	1,84*	1,16*		0,778	999,
	0,040												1,84	1,15*	738*0		,486
	0,025 0												•	1,15 1	0,731 0,731* 0,738* 0,791*	465*0,	311* 0
	0,015 0		_											-	731 0,	161*0,	291* 0,
	0,010 0,									-					ó.	0,461 0,461* 0,465* 0,498*	0,288* 0,291* 0,311* 0,486 0,665
Samole		8	8				_	5					ξύ	9	22	500 0,4	800 0,2
—				2		2	- ∞	-		32	22	8	125	500	315	25	8
Sample	code	∢	8	ပ	Ω	ш	ш	Ø	I	٦	ᅩ	_	Σ	z	۵	Ø	Œ

NOTES

1 At the consumer's risk quality, 10% of lots will be expected to be accepted.

2 All the values are based on the Poisson distribution.

3 Superscript * denotes that the value is for the optional fractional acceptance number sampling plan (see Table 11-C).

Table 8-A — Average outgoing quality limits for normal inspection (Single sampling plans)

	0	3	1 085	1 102																								
	, c	200	733	723	661																							
	30,	400	470	489	434	413																						
	o i	007	326	313	293	27.1	254																					
	į	20	224	218	188	183	167																					
tion)	. .	3	158	149	131	117	113																					
inspeci	ا ا	60	97,1	106	89,4	81,6	72,3	73.3																				
normal	. .	}	9'89	64,7	63,4	55,9	50,2	47.0		45,8																		
tems (r	2	63	42,0	45,7	38,8	39,6	34,4	30.6		29,4	-	29,3																
100 i	ļ ;	2		28,0	27,4	24,3	24,4	22.4	_	20,4	+-	χ, Σ	18															
ities pe	\$	2 │	-:-		16,8 16,0	17,1 17,0	14,9 15,1	15,8	_	14,0 14,3	┼			12,0	Ľ.	11,9												
onform	9	2	18,4 14,8			10,5 10,1	10,5 10,5	_	9,75	9,90	8,94	_	8,16	8,27		7,61	7,33	7,41										
d nonc		r f		12,3 10,5			6,46	98'9	6,82	6,07	6,34	6,38	69'9	5,63	5,22	5,26	4,70	4,73	4,65	4,69								
ems an	C	ر,	-		7,36			4,20	4,14	4,28	3,88	3,89	3,96	3,98	3,58	3,60	3,26	3,28	2,98	3,00	2,93	2,94						
ming it	4	5				4,60 4,33				2,62	2,74	2,74	2,43	2,43	2,53	2,54	2,24	2,24	2,07	2,08	1,88	1,89	1,83	1,84				
confor		2					2,83 2,73				1,68	1,67	1,71	1,71	1,55	1,55	1,58	1,59	1,42	1,42	1,31	1,3	1,17	1,18	1,17	1,17		
sent nor	29.0	3,5						1,84	1,79				1,05	1,05	1,10	1,10	0,971	0,971	1,01	1,01	0,894	0,895	0,816	0,817	0,752	0,753	0,733	ţ, 'o
in perc	6	P,								1,15					0,672	0,670	0,686	0,685	0,617	0,617	0,634	0,634	_	0,559		0,523	0,470	_
Acceptance quality limit, AQL, in percent nonconforming items and nonconformities per 100 items (normal inspection)	20.0	2,50	_								0,736	0,728						0,419		0,435		0,388		966,0		0,358	0,326	7,20,0
nality lin	0 15	2 ,											0,460	0,457						0,266		0,274		0,243		0,254	0,224	_
ance qu	9 0	2							1					_	0,294	0,293						0,168 (_	0,171	_	_	0,158 (_
Accept	0.065	3															0,184	0,183		1		0	_	0,105		_		_
	0.040	-							1									\rightarrow	0,117	0,117			0			0,0672 0	0,0686 0,0971	2007
	\vdash	-										-		1		-			o,	_	36	32			0,	0,0		_
	5 0 0 5	-+							\downarrow		_	_								\dashv	0,0736	0,0735	0	ا		\downarrow	0,0420	2
	0.015	\dashv																					0,0460	0,0460				
	0 0 10	2 2																							0,0294	0,0294		
- I	size		2	ဗ	5	80	13	20		32	C,	3	8		125		200		315		500	3	800	\neg	1 250		2 000]
Sample	epoo epoo	910	¥	æ	O	۵	ш	ш		σ	Ξ	=	7		×			'	Σ		z	:			ø		œ	

NOTE

Upper entries are for inspection for nonconformities per 100 items and are based on the Poisson distribution. Lower entries are for inspection for percent nonconforming and are based on the binomial distribution.

Table 8-B — Average outgoing quality limits for tightened inspection (Single sampling plans)

		1 000	996	1 020																					
		929	619	644	612																		1		
		400	397	412	387	382																			
		250	257	265	247	242	235																		
		150	158	172	159	155	149																		
	ction)	100	97,1	106	103	99,3	95,2																		
	l inspe	65	9'89	64,7	63,4	64,3	61,1	6119																	
	htenec	6	42,0	45,7	38,8	39,6	39,6	39,7	38,7																
	ms (tig	52		28,0	27,4	24,3	24,4	25,7	24,8	24,7												w			
	100 ite	15			16,8	17,1	14,9	15,8	16,1	15,9	15.5	2													
	es per	2	18,4 14,8			10,5 10,1	10,5 10,5	9,71 9,75	9,90 10,0	10,3	_	10,1	9,90	2											
	nformiti	6,5		12,3 10,5			6,46 6,32	6,86	6,07	6,34	6,43	6,49	6,36	4,0	6,25										
	noncor	4,0			7,36 6,70			4,20 4,14	4,28	3,88	3,96	3,98	4,12	7,17	4,00	3,93	3,95								
	ns and	2,5				4,60			2,62	2,74	2,43	2,43	2,53	5,57	2,58	2,52	2,53	2,47	2,48				Ī		
	ing iten	1,5					2,83 2,73			1,68	1,71	1,71	1,55	3 4	1,59	1,63	1,64	1,59	1,59	1,55	1,55		ľ		
	onform	1,0		,				1,84			1,05	1,05	1,10	0 074	0,971	1,01	1,01	1,03	1,03	0,993	0,995	0,990	188'0		
	Acceptance quality limit, AQL, in percent nonconforming items and nonconformities per 100 items (tightened inspection)	0,65							1,15				0,672	_	_		0,617	0,634	0,634		0,644	0,636	_	0,619	
	n perce	0,40						-		0,736				0420			0,435		0,388		968'0	0,412	-	0,398	
	AQL, ii	0,25									0,460	0,457					0,266 (_	0,274 (0,243 (0,253 (+	0,257 0	
	ty limit,	0,15									0	9	0,294	3			0	-	0,168 0		0,171 0	0,155 0	-	0,158 0 0,158 0	
	se qual	0,10											<u> </u>	—	0,183			0,	o,		0,105 0,	0,110	_		
	ceptano	\vdash	.,									_		è	ōō		17			<u>,</u>	o,	72 0,1	, 6	0,0686 0,0971 0,0686 0,0971	
	Ac	0,065										4		-		0,117	0,117	9	2			0,0672	3 3	0,0 0,0 0	
		0,040																0,0736	0,0735				9,0	0,0420	
		0,025																		0,0460	0,0460				0,0267
		0,015										1										0,0294	1,0234		
		0,010										\dashv					\dashv					00		0,0184	
F	eldi					-			<u> </u>			-		-		ري در	,		,			20	1		05
-	Sample	size	~~~	ε	22	- ∞	13	20	32	20	8	-	125	-	 	315	5	2002	3	800	;	1 250	+	2 000	3 150
	Sample size	code letter	∢	В	ပ	۵	ш	ш	g	I	7		¥			Σ		z	-	Δ.		a		Œ	S

NOTE

Upper entries are for inspection for nonconformities per 100 items and are based on the Poisson distribution. Lower entries are for inspection for percent nonconforming and are based on the binomial distribution.

Table 9 — Average sample size curves for single, double and multiple sampling (normal, tightened and reduced inspection)

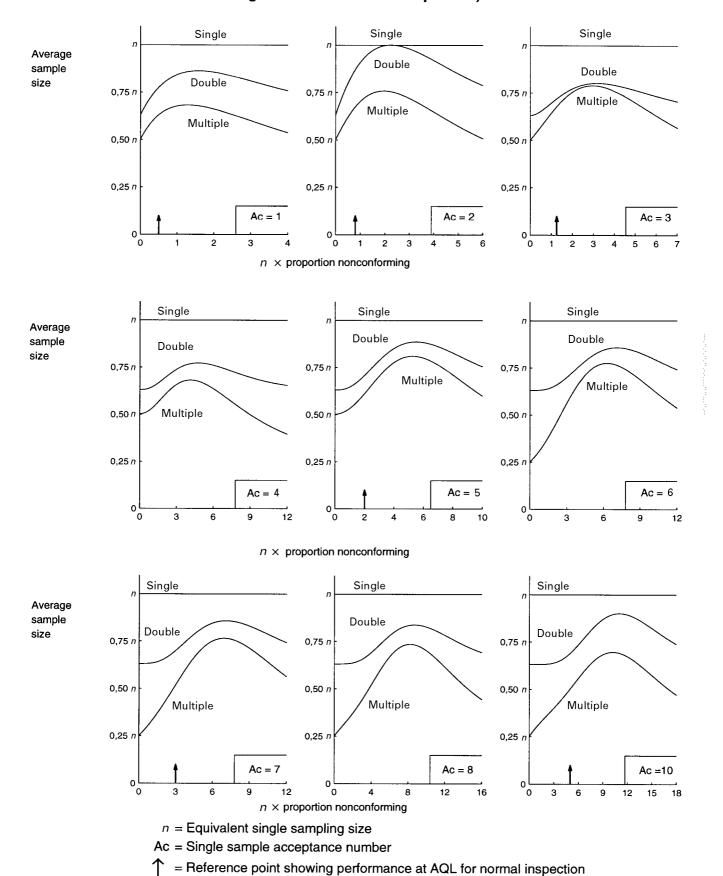
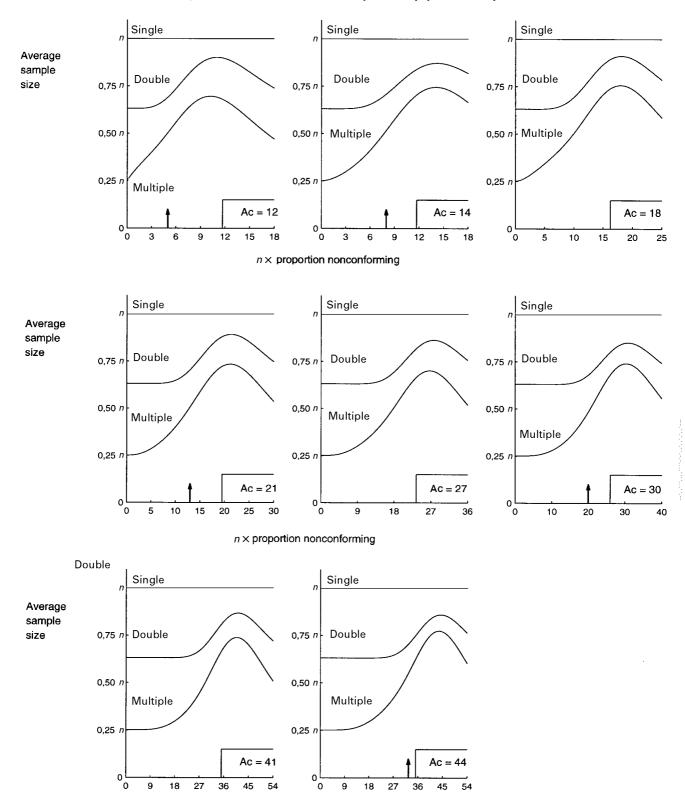



Table 9 — Average sample size curves for single, double and multiple sampling (normal, tightened and reduced inspection) (concluded)

n = Equivalent single sampling size

Ac = Single sample acceptance number

T = Reference point showing performance at AQL for normal inspection

 $n \times$ proportion nonconforming

Table 10-A — Tables for sample size code letter A (Individual plans)

Chart A Operating characteristic curves for single sampling plans (Curves for double and multiple sampling are matched as closely as practicable)

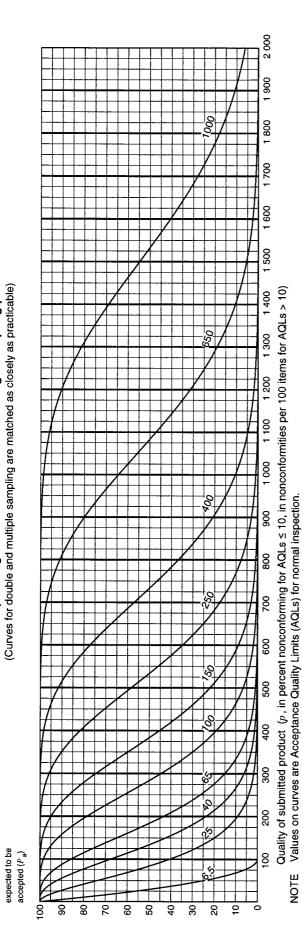


Table 10-A-1 — Tabulated values for operating characteristic curves for single sampling plans

			Accepta	ince Quality	/ Limit, non	mal inspect	ion (in perc	ent noncon	Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)	Inonconfo	rmities per	100 items)			
P	6,5	6,5	25	40	99	100	150	\bigvee	250	\bigvee	400	\bigvee	029	\bigvee	1 000
75	p (in percent nonconforming)						p (in nc	nconformi	p (in nonconformities per 100 items)	items)					
0'66	0,501	0,503	7,43	21,8	41,2	89,3	145	175	239	305	374	517	629	859	977
95,0	2,53	2,56	17,8	40,9	68,3	131	199	235	308	384	462	622	745	995	1 122
0,06	5,13	5,27	56,6	55,1	87,2	158	233	272	351	432	515	684	812	1 073	1 206
75,0	13,4	14,4	48,1	86,4	127	211	298	342	431	521	612	795	934	1214	1 354
20,0	29,3	34,7	83,9	134	184	284	383	433	533	633	733	933	1 083	1 383	1 533
25,0	50,0	69,3	135	196	255	371	484	540	651	761	870	1 087	1 248	1 568	1 728
10,0	68,4	115	194	566	334	464	589	029	0//	688	1 006	1 238	1 409	1 748	1 916
2,0	9'22	150	237	315	388	526	657	722	848	972	1 094	1 335	1 512	1 862	2 035
1,0	90,0	230	332	420	502	655	800	870	1 007	1 141	1 272	1 529	1 718	2 088	2 270
	$\left\{ \right\}$	\bigvee	40	65	100	150	\bigvee	250	\bigvee	400	\bigvee	650	\bigvee	1 000	\bigvee
			Acceptan	ice Quality	Limit, tighte	ened inspec	tion (in per	cent nonco	Acceptance Quality Limit, tightened inspection (in percent nonconforming and nonconformities per 100 items)	d nonconfe	ormities per	100 items			

Binomial distribution used for entries corresponding to inspection for nonconforming items, Poisson for inspection for number of nonconformities. NOTE

Table 10-A-2 — Sampling plans for sample size code letter A

	1 000	Ac Re	33	€	*	\bigvee	
	-		28 30			<u>\</u>	
	X	Ac Re	22 27 2	€	*	1 000	
(sms)	650	Ac Re		*	*	\times	(owo,
100 ite		Ac Re ⊿	19 21	*	*	650	00
ber '			15 18	E)	•	66	200
mities	400	Ac Re		€	*	X	rmitic
confor	\bigvee	Ac Re	10 11 12 13 14	*)	**	400	, jacob
uou p			11 12			1	2
ng and	250	Ac Re		*	*	X	100
uality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)	X	Ac Re	6	*	*	250	and of the
oncon	150	Ac Re	8	£	*	\bigvee	
ent ne	<u> </u>		2 9	<u> </u>	*	\wedge	1
n perc	8	Ac Re	2 (*	*	150	2
tion (ii	65	Ac Re	4	*	*	100	, acito
spec			3				0000
mal ir	4	Ac Re	2	*)	*	65	7000
it, nor	25	Ac Re	2	*	*	40	*ioh
ty Lim	15	Ac Re /		use code letter	Δ	25	imi I
Quali	_					2	histif
tance	2	Ac Re		use code letter	O	15) 000
Acceptance Q	X	Ac Re		use code	۵	10	Acceptance Ouslity Limit tightened increation (in present acceptance on present on the first one to 100 items)
	2		-			\/	٧
	6,5	Ac Re	0	*	*	\triangle	
	< 6,5	Ac Re	⇒	⇒	⇒	ر د ع	
Cumu- lative	sample	size	2				<u> </u>
Cur	san	.ïs					
Type of samp-	ling .	plan	Single	Double	Multiple		
T _Z		0	. <u>S</u>	۵	<u> </u>		

= use next subsequent sample size code letter for which acceptance and rejection numbers are available

Ac = Acceptance number

Re = Rejection number

* = use single sampling plan above (or alternatively use code letter D)

(*) = use single sampling (or alternatively use code letter B)

Table 10-B — Tables for sample size code letter B (Individual plans)

Chart B Operating characteristic curves for single sampling plans (Curves for double and multiple sampling are matched as closely as practicable)

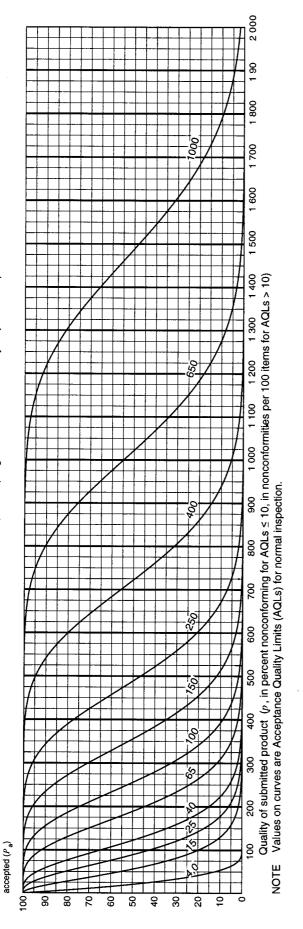


Table 10-B-1 — Tabulated values for operating characteristic curves for single sampling plans

			Acce	ptance Q	uality Limi	, normal i	nspection	(in perce	nt noncon	forming a	Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)	nformities	per 100 it	ems)			
0	4,0	4,0	15	25	40	92	100	X	150		250	X	400	X	029		1 000
a	p (in percent nonconforming)							p (in nor	p (in nonconformities per 100 items)	ties per 10	00 items)						
0'66	0,334	0,335	4,95	14,5	27,4	59,5	6'96	117	159	203	249	345	419	572	651	947	1 029
95,0	1,70	1,71	11,8	27,3	45,5	87,1	133	157	506	256	308	415	496	663	748	1 065	1 152
0,06	3,45	3,51	17,7	36,7	58,2	105	144	181	234	288	343	456	541	716	804	1 131	1 222
75,0	9,14	9,59	32,0	9'29	84,5	141	199	228	287	347	408	530	623	608	903	1 249	1 344
50,0	20,6	23,1	6'29	89,1	122	189	256	588	356	422	489	622	722	922	1 022	1 389	1 489
25,0	37,0	46,2	868	131	170	247	323	360	434	507	580	724	832	1 045	1 152	1 539	1 644
10,0	53,6	8'92	130	177	223	608	365	433	514	593	671	825	626	1 165	1 277	1 683	1 793
5,0	63,2	6'66	158	210	258	350	438	481	292	648	730	890	1 008	1 241	1 356	1 773	1 886
1,0	78,5	154	221	280	335	437	533	580	671	761	848	1 019	1 145	1 392	1 513	1 951	2 069
	6,5	6,5	25	40	65	100	\bigvee	150	\bigvee_{i}	250	\bigvee	400	\bigvee	650	\bigvee	1 000	\bigvee
			Accept	tance Qua	ality Limit,	tightened	inspection	וו perce	ent noncol	nforming	Acceptance Quality Limit, tightened inspection (in percent nonconforming and nonconformities per 100 items)	nformities	s per 100	items)			

NOTE Binomial distribution used for entries corresponding to inspection for nonconforming items, Poisson for inspection for number of nonconformities.

Percent of lots expected to be

Table 10-B-2 — Sampling plans for sample size code letter B

	1 000	Ac Re	4 45	5 31	6 57		‡	X	
	$\frac{1}{\sqrt{2}}$	Ac Re	42 4	29 25	53 56		‡	1 000	
			14	23	52		+	- 0	
ls)	650	Ac Re Ac Re	30 31	17 22	27 34 35 37 38 52		‡	X	ms)
0 iten	X	c Re	7 28	5 20	4 35		‡	650	00 ite
1 5			10	9	3				er 1
ed se	400	Ac Re	21 2	11 1	26 2		‡	X	ties p
formiti	X	Ac Re Ac Re	10 11 12 13 14 15 18 19 21 22 27 28 30 31 41 42 44 45	9 14 11 16 15 20 17 22 23	10 11 12 13 15 16 18 19 23 24 26		‡	400	nformi
Con	<u> </u>	- 	151		-61				ncor
nou p	250	Ac F	4-	7 11	8		‡	X	ou p
ganc		Ac Re	2 13	6 10	5 16		+ +	250	ig an
l iği				6	3				rmir
onfor	150	Ac Re	10 1	5	12		‡	X	confo
nonc	X	Ac Re	6	4 7	11		‡	150	t non
ent	/ \		& &	9	<u>~</u>				cen
) per	100	Ac Re	2	ر س	9 10		+ +	X	in pei
on (ir	65	Ac Re	9	52	7		‡	100	tion (
pecti			5	3	5				spec
al ins	4	Ac Re	3	-	4		‡	65	ed in
Jorma	25	Ac Re	3	3	4		+ +	40	hten
it, r	_		2 2	0	2 3	\dashv			t, tig
ţ.	15	Ac Re	1	0	-		‡	25	, Limi
Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)	5	∖c Re		nse	code	letter	O	15	Acceptance Quality Limit, tightened inspection (in percent nonconforming and nonconformities per 100 items)
tance	\bigvee	Ac Re Ac		esn	code	letter	۵	10	nnce (
ccep	\triangle	le Ac				_ <u></u>		-	cepta
	6,5	Ac F		nse	code	letter	∢	X	A
	0,4	4c Re	0 1	*			*	6,5	
:	< 4,0	Ac Re Ac Re	⇒	⇒			⇒	6,5	
	L	▼				-			
Cumu- lative	sample	size	က	2	4				
Type of samp-	ling	plan	Single	Double			Multiple		

= use next subsequent sample size code letter for which acceptance and rejection numbers are available

Ac = Acceptance number

Re = Rejection number

* = use single sampling plan above (or alternatively use code letter E)

++ = use double sampling plan above (or alternatively use code letter D)

В

Table 10-C — Tables for sample size code letter C (Individual plans)

Chart C Operating characteristic curves for single sampling plans (Curves for double and multiple sampling are matched as closely as practicable)

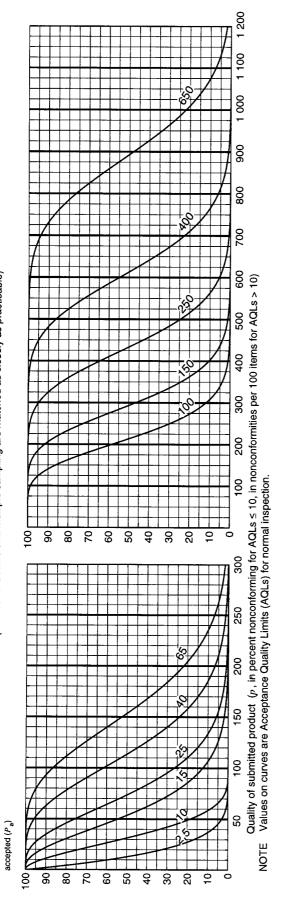


Table 10-C-1 — Tabulated values for operating characteristic curves for single sampling plans

				Accep	stance Qu	ality Limit	, normal ir	nspection	Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)	t nonconfe	orming an	d noncon	formities	per 100 ite	ems)			
$P_{\mathbf{a}}$	2,5	10	2,5	10	15	25	40	65	\bigvee	100	X	150	X	250	X	400	X	650
	<i>p</i> (in proportion)	p (in percent nonconforming)							p (in non	p (in nonconformities per 100 items)	es per 10	0 items)						
0,66	0,201	3,27	0,201	2,97	8,72	16,5	35,7	58,1	70,1	95,4	122	150	207	251	343	391	568	618
95,0	1,02	7,64	1,03	7,11	16,4	27,3	52,3	9,67	93,9	123	154	185	249	298	398	449	629	691
90,0	2,09	11,2	2,11	10,6	22,0	34,9	63,0	93,1	109	140	173	206	273	325	429	482	629	733
75,0	5,59	19,4	5,75	19,2	34,5	2'09	84,4	119	137	172	208	245	318	374	485	542	749	0 806
50,0	12,9	31,4	13,9	33,6	53,5	73,4	113	153	173	213	253	293	373	433	553	613	833	893
25,0	24,2	45,4	27,7	53,9	78,4	102	148	194	216	260	304	348	435	499	627	691	923	986
10,0	36,9	58,4	46,1	8,77	106	134	185	235	260	308	356	403	495	564	669	992	1 010	1 076
5,0	45,1	65,7	6,63	94,9	126	155	210	263	289	339	389	438	534	605	745	814	1 064	1 131
1,0	60,2	77,8	92,1	133	168	201	262	320	348	403	456	509	612	289	835	806	1 171	1 241
	4,0	\bigvee	4,0	15	25	40	92	\bigvee	100	\bigvee	150	X	250	X	400	X	650	X
				Acceptance		lity Limit.	ightened	nspection	(in perce	Quality Limit, tightened inspection (in percent poposotorming and poposotormities per 100 items)	forming	יים מטונים אינ	formities	nor 100 ii	(ame)			

NOTE Binomial distribution used for entries corresponding to inspection for nonconforming items, Poisson for inspection for number of nonconformities.

expected to be Percent of lots

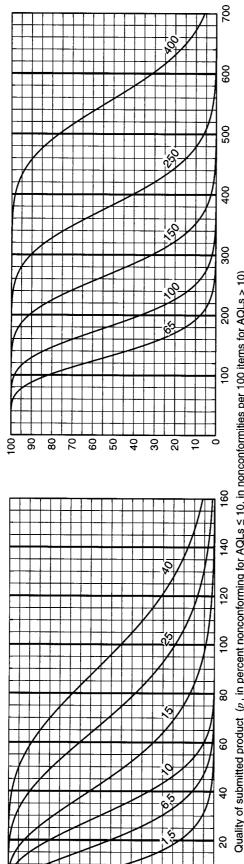
Table 10-C-2 — Sampling plans for sample size code letter C

	8	Ac Re		asn	code	letter	ω		1 000	
	650 1	Ac Re	45	3	57	Ī		+ +	-	
	9	e Ac	12 44	29 25	53 56	-			-	
	X	Ac Re	41 4	22 23 2				‡	650	(s
items	400	c Re	0 31	7 22	35 37 38 52			+		item
100		Re	283	20 17	353			+ +	004	r 100
led so		e Ac	2 27	6 15	7 34				4	es pe
rmitie	250	Ac B	212	14 11 16 15	26 2			+ +	X	ormit
confo	X	c Re	8 19	9 14	3 24			+	250	conf
nou F	150	Re	15 18	1 6	19			‡	- (1)	d nor
ganc	=	Ac	4 4	7	3 18			+	\perp	ng an
rmin	X	Ac Re Ac Re Ac Re Ac Re Ac Re	9 10 11 12 13 14 15 18 19 21 22 27 28 30 31 41 42 44	6 10	11 12 13 15 16 18 19 23 24 26 27 34			+	150	formir
confe	100	Ac Re	1	6	13			‡		ncon
t nor	1	Re A	9 10	7 5	112					nt no
ercer	\triangle	Ac	ω	4	10			‡	100	erce
(in pe	65	Ac Re Ac Re	7 8	3 6	9 10			‡	\times	d uj) r
ction	40		9	2	7			‡	65	ectior
edsu	7	e Ac	4 5	3	9	_		т	e	insp
rmal i	25	Ac Re Ac Re Ac Re	8	-	4			‡	40	ened
it, noı	15	c Re	ю 	60	4			‡	25	tight
/ Lim		Ac Re A	2	0	2			+		Limit
ualit	10		-	0	-			‡	15	ality
nce C	6,5	Ac Re		nse	code	letter	۵		10	ce Qu
Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)	X	Ac Re		nse	code	letter	Ш		6,5	Acceptance Quality Limit, tightened inspection (in percent nonconforming and nonconformities per 100 items)
*	4,0	Ac Re		esn	epoo	letter	В			Acc
	2,5	tc Re	0 1	*				*	0,4	
	< 2,5	Ac Re Ac Re Ac Re Ac Re	⇒	⇒				⇒	< 4,0	
Cumu- lative	sample	size µ	ည	m	9			*		
Type of samp-	guil	plan	Single	Double				Multiple		

= use next subsequent sample size code letter for which acceptance and rejection numbers are available

Ac = Acceptance number

le = Rejection number


* = use single sampling plan above (or alternatively use code letter F)

++ = use double sampling plan above (or alternatively use code letter D)

C

Table 10-D — Tables for sample size code letter D (Individual plans)

Chart D Operating characteristic curves for single sampling plans (Curves for double and multiple sampling are matched as closely as practicable)

Quality of submitted product $(p, in percent nonconforming for AQLs \le 10$, in nonconformities per 100 items for AQLs > 10) Values on curves are Acceptance Quality Limits (AQLs) for normal inspection. NOTE

Table 10-D-1 — Tabulated values for operating characteristic curves for single sampling plans

				Ac	Acceptance Quality		imit, norm	al inspect	tion (in pe	rcent nor	Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)	ng and nc	nconform	ities per	100 items				
Pa	1,5	6,5	10	1,5	6,5	10	15	25	40	\bigvee	92	X	100	X	150	\bigvee	250	X	400
	p (in per	p (in percent nonconforming)	informing)							p (in nor	p (in nonconformities per 100 items)	ties per 1	00 items)						
0,66	0,126	1,97	6,08	0,126	1,86	5,45	10,3	22,3	36,3	43,8	9'65	76,2	93,5	129	157	215	244	355	386
95,0	0,639	4,64	11,1	0,641	4,44	10,2	17,1	32,7	49,8	58,7	1,77	96,1	116	156	186	249	281	399	432
90,0	1,31	6,86	14,7	1,32	6,65	13,8	21,8	39,4	58,2	6,79	8,78	108	129	171	203	268	301	424	458
75,0	3,53	12,1	22,1	3,60	12,0	21,6	31,7	52,7	74,5	85,5	108	130	153	199	234	303	339	468	504
50,0	8,30	20,1	32,1	8,66	21,0	33,4	45,9	6,07	95,9	108	133	158	183	233	271	346	383	521	558
25,0	15,9	30,3	43,3	17,3	33,7	49,0	63,9	95,8	121	135	163	190	217	272	312	392	432	577	617
10,0	25,0	40,6	53,8	28,8	48,6	66,5	83,5	116	147	162	193	222	252	309	352	437	479	631	672
5,0	31,2	47,1	0'09	37,4	59,3	78,7	6'96	131	164	180	212	243	274	334	378	465	509	665	707
1,0	43,8	59,0	70,7	57,6	83,0	105	126	164	200	218	252	285	318	382	429	522	568	732	9//
	2,5	10	\bigvee	2,5	10	15	25	40	X	65	\bigvee	100	\bigvee	150	\bigvee	250	\bigvee	400	X
			Acceptan	Acceptance Quality Limit, tightened	y Limit, tig		Ispection	(in percei	nt noncon	orming a	inspection (in percent nonconforming and nonconformities per 100 items)	Informities	s per 100	items)					

Binomial distribution used for entries corresponding to inspection for nonconforming items, Poisson for inspection for number of nonconformities. NOTE

expected to be

accepted (Pa)

001

8

20 8

6

Table 10-D-2 — Sampling plans for sample size code letter D

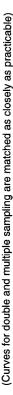
1,5 2,5 Ac Re Ac F Cod was a cod was	40 Re Re Re Code code code (etter Code 2,5 Code Code Code Code Code Code Code Code	4.5 2,5 Ac Re Ac Re code code letter letter C C C C C C C C C C C C C C C C C C C	4.5 2,5 Ac Re Ac Re code code letter letter C C C C C C C C C C C C C C C C C C C	4.5 2.5 Ac Re Ac Re code code (etter letter C.5 C.5 C.5 C.5 C.5 C.5 C.5 C.5 C.5 C.5	4.5 2.5 Ac Re Ac Re code code (etter letter C.5 C.5 C.5 C.5 C.5 C.5 C.5 C.5 C.5 C.5	4.5 2,5 Ac Re Ac Re code code code letter letter C	4.5 2,5 Ac Re Ac Re code code code letter letter C	4.5 2.5 Ac Re Ac Re code code (etter letter C.5 C.5 C.5 C.5 C.5 C.5 C.5 C.5 C.5 C.5	4.5 2,5 Ac Re Ac Re code code code (etter letter C C C C C C C C C C C C C C C C C C C	4.5 2,5 Ac Re Ac Re Code code code letter code 2,5 C C	4.5 2,5 Ac Re Ac Re Code code code letter code 2,5 C C	4.5 2,5 Ac Re Ac Re code code teletrer code code code code code code code code	4.5 2,5 Ac Re Ac Re Code code (etter letter Code 2,5 C C	4.5 2,5 Ac Re Ac Re Code code code letter code 2,5 C C	4.5 2.5 Ac Re Ac Re code code (etter letter C.5 C.5 C.5 C.5 C.5 C.5 C.5 C.5 C.5 C.5	4.5 2,5 Ac Re Ac Re code code code letter letter C	4.5 2,5 Ac Re Ac Re code code code (etter letter C C C C C C C C C C C C C C C C C C C	Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconformities 1.5 2.5 4.0 6.5 10 15 25 40 6.5 100 15 0.5 40 Ac Re	Type of Cumu- samp- lative	ling sample <	plan size Ac	Single 8	Double 5	10		N .	4	Multiple 6	∞	10	V	
Acceptance Qu. 5 2.5 4,0 Re Ac Re Ac Re Ac Re code code code code code code code cod	Acceptance Quality 5 2.5 4.0 6,5 Re Ac Re Ac Re Ac Fe 1 1 1 1 * use use use 0 code code code 1 letter letter letter C F E # 1 C A 4,0 6,5 10	Acceptance Quality Limi 5 2,5	Acceptance Quality Limit, no Solve	Acceptance Quality Limit, normal Be Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re a use use use 0 2 0 3 1 code code code 1 2 3 4 4 letter letter letter code code code 1 2 3 4 4 letter letter letter a C F E # 2 # 2 # 0 2 0 3 1 0 2 0 3 1 0 2 0 3 1 1 2 3 4 4 1 2 3 4 4 1 2 3 5 5 5 4,0 6,5 10 15 25	Acceptance Quality Limit, normal inspace Acceptance Quality Limit, normal inspace Be Ac Re	Acceptance Quality Limit, normal inspection of the Ac Re Ac	Acceptance Quality Limit, normal inspection (i Be Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac 1 1 2 2 3 3 4 5 6 7 1 2 2 3 3 4 5 6 7 2 2 3 3 4 5 6 7 2 2 3 3 4 5 6 7 2 2 3 3 4 5 6 7 3 3 4 5 6 7 4 0 2 0 3 1 3 2 5 3 4 0 2 0 3 1 4 5 6 7 8 4 0 2 0 3 1 4 5 6 7 9 0 2 0 3 1 4 5 6 7 9 0 2 0 3 1 4 5 6 7 9 0 2 0 3 1 4 5 6 7 9 0 2 0 3 1 4 5 6 7 9 0 2 0 3 1 7 7 9 0 2 0 3 1 7 7 9 0 2 1 3 2 5 4 7 9 0 2 1 3 2 5 4 7 9 0 2 1 3 2 5 4 7 9 0 2 1 3 2 5 4 7 9 0 2 1 1 2 3 4 4 5 6 7 9 0 2 1 1 2 3 4 4 5 6 7 9 0 2 1 1 2 3 4 4 5 6 7 9 0 2 1 1 2 3 4 4 5 6 7 9 0 2 1 1 2 3 4 4 5 6 7 9 0 2 1 1 2 3 4 4 5 6 7 9 0 2 1 1 2 3 4 4 5 6 7 9 0 2 1 1 2 3 4 4 5 6 7 9 0 2 1 1 2 3 4 4 5 6 7 9 0 2 1 1 1 2 3 4 1 5 6 7 9 0 2 1 1 1 2 3 4 1 5 6 7 9 0 2 1 1 1 2 3 4 1 5 6 7 9 0 1 1 1 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	* Use use use use code 1 2 3 4 4 5 6 7 8 10 6.5 10 1 2 2 3 3 4 5 6 7 8 6 6 7 8 6 6 7 8 7 8	Acceptance Quality Limit, normal inspection (in percented Ac Re Ac	* Use use use code 1 2 3 4 4 5 6 7 9 10 10 11 11 11 11 11 11 11 11 11 11 11	Acceptance Quality Limit, normal inspection (in percent nonconding 2.5	Acceptance Quality Limit, normal inspection (in percent nonconform) 5 2,5 4,0 6,5 10 15 25 40 65 65 85 86 85 89 10 11 12 89 60 80 80 80 80 10 11 12 80 80 80 10 11 12 80 80 80 10 11 12 80 80 80 80 10 11 12 80 80 80 80 80 80 80 80 80 80 80 80 80	Acceptance Quality Limit, normal inspection (in percent nonconforming & 2.5	Acceptance Quality Limit, normal inspection (in percent nonconforming and 1). S. 2.5	Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconform	Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconform	Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconformiting). 1	Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconformities p. 5.2, 5.40, 6.5 10 15 25 40 65 70 1112 1314 15 18 1921 22 22		< 1,5 1	s Re Ac	0 ⇒				 ⇒				·	< 2,5 2,	
Acceptance Quence Read Ac Read Read Read Read Read Read Read Read	Acceptance Quality 2,5 C Re Ac Re Ac Re Ac F see use use 0 code code code 1 tter letter letter C F E # 9 C A,0 6,5 10	Acceptance Quality Limi 2,5 c Re Ac	Acceptance Quality Limit, no c.55	Acceptance Quality Limit, normal 2,5	Acceptance Quality Limit, normal inspace Repairs 4,0 6,5 10 15 10	Acceptance Quality Limit, normal inspection of the Ac Re Ac	Acceptance Quality Limit, normal inspection (i 2,5 C Re Ac R	Acceptance Quality Limit, normal inspection (in pec 2,5	Acceptance Quality Limit, normal inspection (in percenter Re Ac Re	Acceptance Quality Limit, normal inspection (in percent normal 2,5	Acceptance Quality Limit, normal inspection (in percent nonconcondered Ac Re Ac Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac A	Acceptance Quality Limit, normal inspection (in percent nonconform 2.5	Acceptance Quality Limit, normal inspection (in percent nonconforming a conference Quality Limit, normal inspection (in percent nonconforming a conference Quality Limit, normal inspection (in percent nonconforming a conference Quality Limit, normal inspection (in percent nonconforming a conference Ac Re A	Acceptance Quality Limit, normal inspection (in percent nonconforming and 1	Acceptance Quality Limit, normal inspection (in percent nonconforming and nonced by the conforming and	Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconform	Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconformiting and nonconformit	Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconformities page 2.5			Re A	-		<u> </u>	<u>•</u>						5	
coeptance Quence Quence Code Code Code Code Code Fiter	Ceptance Quality 4,0 6,5 C Re Ac Re Ac F 1 1 1 2 Code code 1 Etter letter F E # 1 0 0 0 6 4,0 6,5 10	Ceptance Quality Limi A,0 6,5 AC Re Ac Re Ac USE USE 0 2 0 Code code 1 2 3 etter letter F E # 2 # 0 2 0 0 2 0 0 2 0 0 2 0 1 2 3 4,0 6,5 10	Ceptance Quality Limit, no A,0 6,5 10 Ac Re Ac Re Ac Re Use Use 0 2 0 3 code code 1 2 3 4 etter letter F E # 2 # 2 0 2 0 3 0 2 0 3 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4	Ceptance Quality Limit, normal vc Re Ac Re	Ceptance Quality Limit, normal inspace At the At Be At	A,0 6,5 10 15 25	Ceptance Quality Limit, normal inspection (i 4,0 6,5 10 15 25 4 Ac Re	A	A	Ceptance Quality Limit, normal inspection (in percent normal corpusition) A,0 6,5 10 15 25 40 ACRE ACRE ACRE ACRE ACRE ACRE ACRE ACRE	Septance Quality Limit, normal inspection (in percent noncondactive) 4,0 6,5 10 15 25 40	Ceptance Quality Limit, normal inspection (in percent nonconform 4,0 6,5 10 15 25 40 65 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Ceptance Quality Limit, normal inspection (in percent nonconforming & 4,0 6,5 10 15 25 40 65	Ceptance Quality Limit, normal inspection (in percent nonconforming and 1	Ceptance Quality Limit, normal inspection (in percent nonconforming and nonconforming Limit, normal inspection (in percent nonconforming and nonconforming	A	Ceptance Quality Limit, normal inspection (in percent nonconformitis and nonconformitis) 4,0 6,5 10 15 25 40 65 7 100 7 151 C Re Ac Re A	Ceptance Quality Limit, normal inspection (in percent nonconformities page 4,0 6,5 10 15 25 40 65 70 1100 7150 7100 7150 7100 7150 7100 7150 7100 7150 7100 7150 7100 7150 7100 7150 7100 7110 711) AC	2,5	: Re ⊿	_			tter	U						
nce Que use code letter E	Ac Re Ac F (6,5) Ac Re Ac F (7) Locate 1	Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re	Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re	Ac Re Ac Re Ac I 1 1 2 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Ac Re Ac Re Ac Re Ac Re Locade 1 2 2 3 3 4 1 1 2 2 3 3 4 1 1 2 2 3 3 4 1 1 2 2 3 3 4 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re	Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re	Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re	Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re	Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re	Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re	Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re	Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re	Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re	Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re	Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re	Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re	Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re	ceptar	X	\c Re		esn		etter	ш	**				4,0	
	1 10 0 0 # 0 0 1 10 10 10 10 10 10 10 10 10 10 10	Ac Be Ac Be	ality Limit, no 6,5 10 Ac Re Ac Re 1 2 2 3 1 2 2 3 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4	6,5 10 1! Ac Re Ac Re Ac I 1 2 2 3 3 1 2 2 3 1 1 2 3 4 4 1 2 3 4 4 0 2 0 3 1 0 2 0 3 1 0 2 0 3 1 1 2 3 4 4 1 2 3 4 4 1 2 3 4 7	Ac Re Ac Re Ac Re L Ac Re Ac Re Ac Re L 1 2 2 3 3 4 1 1 2 2 3 3 4 1 1 2 3 4 4 5 6 1 1 2 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1	Ac Re Ac Re	ality Limit, normal inspection (i 6,5 10 15 25 4 Ac Re Ac Re Ac Re Ac Re Ac 1 2 2 3 3 4 5 6 7 1 2 2 3 1 3 2 5 3 1 2 3 4 4 5 6 7 9 1 2 3 4 4 5 6 7 9 0 2 0 3 1 4 2 6 3 0 2 0 3 1 4 2 6 3 0 2 0 3 1 4 2 6 3 1 2 3 4 4 5 6 7 9 1 2 3 4 5 6 7 9	ality Limit, normal inspection (in periods) Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re 1 2 2 3 3 4 5 6 7 8 1 1 2 2 3 4 4 5 6 7 9 10 1 2 3 4 4 5 6 7 9 10 1 2 3 4 4 5 6 7 9 10 1 2 3 4 4 5 6 7 9 10 1 2 3 4 4 5 6 7 9 10 1 2 3 4 4 5 6 7 9 10 1 2 3 4 4 5 6 7 9 10 1 1 2 3 4 4 5 6 7 9 10 1 1 2 3 4 4 5 6 7 9 10 1 1 2 3 4 4 5 6 7 9 10 10 15 25 40	Ac Re Ac Re	ality Limit, normal inspection (in percent normality Limit, nor	Ac Re Ac Re	ality Limit, normal inspection (in percent nonconform 6,5 10 15 25 40 65 8 8 9 10 11 12 12 2 3 3 4 5 6 7 8 8 9 10 11 12 13 15 1 2 3 4 4 5 6 7 9 10 10 11 12 13 15 1 2 3 4 4 5 6 7 9 10 10 11 12 13 15 1 2 3 4 4 5 6 7 9 10 10 11 12 13 15 1 2 3 4 4 5 6 7 9 10 10 11 12 13 15 1 2 3 4 4 5 6 7 9 10 10 11 12 13 15 1 2 3 4 4 5 6 7 9 10 10 11 12 13 15 1 2 3 4 4 5 6 7 9 10 10 11 12 13 15 1 1 2 3 4 4 5 6 7 9 10 10 11 12 13 15 10 15 12 11 12 13 15 10 15 15 15 15 15 15 15 15 15 15 15 15 15	ality Limit, normal inspection (in percent nonconforming 6,5 10 15 25 40 65 65	ality Limit, normal inspection (in percent nonconforming and 1 6,5 10 15 25 40	Ac Re Ac Re	Ac Re Ac Re	Ac Re Ac Re	Ac Re Ac Re	nce Q	4,0	Ac Re		nse	epoo	letter	Ш					6,5	
Limit, normal inspection (in percent nonconforming and nonconformities per 10	th, normal inspection (in percent nonconforming and nonconformities per 10	Ac Re Ac Re	Inspection (in percent nonconforming and nonconformities per 10 10 10 10 10 10 10 10	25 40	on (in percent nonconforming and nonconformities per 10 40 40 65 7 8 8 9 10 11 12 13 14 15 18 19 21 22 27 28 7 8 8 9 10 11 12 13 14 15 18 19 21 22 27 28 9 10 10 11 12 13 15 16 18 19 23 24 26 27 34 35 1 6 2 7 3 8 3 9 4 10 6 12 7 14 10 17 1 6 2 7 3 8 3 9 4 10 6 12 7 14 10 17 3 8 4 9 6 10 7 12 8 13 11 17 13 19 17 24 5 9 6 11 9 12 11 15 12 17 16 22 20 25 25 31 9 10 10 11 12 13 15 16 18 19 23 24 26 27 34 35 9 10 10 11 12 13 15 16 18 19 23 24 26 27 34 35	10 Percent nonconforming and nonconformities per 10 10 Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re 8 8 9 10 11 12 13 14 15 18 19 21 22 27 28 8 8 9 10 11 12 13 14 15 18 19 21 22 27 28 10 10 11 12 13 15 16 18 19 23 24 26 27 34 35 4 0 4 0 5 0 6 1 7 1 8 2 9 3 10 6 2 7 3 8 3 9 4 10 6 12 7 14 10 17 8 4 9 6 10 7 12 8 13 11 17 13 19 17 24 9 6 11 9 12 11 15 12 17 16 22 20 25 25 31 10 10 11 12 13 15 16 18 19 23 24 26 27 34 35 6 5 6 7 7 8 8 7 10 7 10 8 13 11 17 13 19 17 24 8 6 10 7 12 8 13 11 17 13 19 17 24 9 6 11 9 12 11 15 12 17 16 22 20 25 25 31 10 10 11 12 13 15 16 18 19 23 24 26 27 34 35	Cent nonconforming and nonconformities per 10 Ac Re A	11 12 13 15 16 18 19 23 24 26 27 34 35 10 7 12 13 15 16 18 19 23 24 26 27 34 35 10 12 13 15 16 18 19 23 24 26 27 34 35 10 11 12 13 15 16 18 19 23 24 26 27 34 35 10 11 12 13 15 16 18 19 23 24 26 27 34 35 11 12 13 15 16 18 19 23 24 26 27 34 35 11 12 13 15 16 18 19 23 24 26 27 34 35 11 12 13 15 16 18 19 23 24 26 27 34 35 11 12 13 15 16 18 19 23 24 26 27 34 35 11 12 13 15 16 18 19 23 24 26 27 34 35 11 12 13 15 16 18 19 23 24 26 27 34 35	CRe Ac Re Ac Re Ac Re Ac Re Ac Re CRe Ac Re Ac Re Ac Re Ac Re CRe Ac Re Ac Re Ac Re Ac Re CRe Ac Re Ac Re Ac Re CRe Ac Re Ac Re Ac Re CRe CRe CRe CRe CRe CRe CRe	100 Miles per 10 M	Ing and nonconformities per 10	and nonconformities per 10 100 Ac Re Ac Re Ac Re Ac Re 14 15 18 19 21 22 27 28 14 15 18 19 21 22 27 28 18 19 23 24 26 27 34 35 1 7 1 8 2 9 3 10 4 10 6 12 7 14 10 17 8 13 11 17 13 19 17 24 2 17 16 22 20 25 25 31 8 19 23 24 26 27 34 35 8 19 23 24 26 27 34 35	nonconformities per 10 ACRE ACRE ACRE ACRE ACRE 150 18 19 21 22 27 28 19 14 11 16 15 20 9 23 24 26 27 34 35 11 8 2 9 3 10 6 12 7 14 10 17 16 22 20 25 25 31 7 16 22 20 25 25 31 7 150 7 150 7 150	onformities per 10 150	21 22 27 28 21 22 27 28 26 27 34 35 20 25 25 31 26 27 34 35 20 25 25 31 26 27 34 35 26 27 34 35	es per 10 Re Ac Re Re Ac Re 16 15 20 27 34 35 27 34 35 27 34 35 25 25 31 25 25 31	er 10 C Re C Re C Re C Re C Re C Re C Re C Re		0 ite	25	Ac					4			28		_ X	
Ac Re Ac Re	1, normal inspection (in percent nonconforming and nonconformities per 100 ited	Ac Re Ac Re	Inspection (in percent nonconforming and nonconformities per 100 ited	25 40 65 7 100 7 150 7 25 8 30 8 9 10 11 12 13 14 15 18 19 21 22 27 28 30 5 7 9 10 10 11 12 13 14 15 18 19 21 22 27 28 30 5 7 9 10 10 11 12 13 15 16 18 19 23 24 26 27 34 35 37 5 9 10 10 11 12 13 15 16 18 19 23 24 26 27 34 35 37 5 1 6 2 7 3 8 3 9 4 10 6 12 7 14 10 17 11 12 13 15 16 18 19 23 24 26 27 34 35 37 10 4 10 10 11 12 13 15 16 18 19 23 24 26 27 34 35 37 10 10 11 12 13 15 16 18 10 11 11 12 13 15 16 18 10 11 12 13 15 16 18 10 11 12 13 15 16 18 10 11 11 12 13 15 16 18 10 11 11 12 13 15 16 18 10 11 11 12 13 15 16 18 10 11 11 12 13 15 16 18 10 11 11 11 11 11 11 11 11 11 11 11 11	on (in percent nonconforming and nonconformities per 100 ite 40	10 10 11 12 13 14 15 18 19 17 17 17 18 19 17 17 17 17 17 17 17	Trent nonconforming and nonconformities per 100 items of the following and nonconformities between the following and nonconformities and no	11 12 13 15 16 18 19 23 24 26 27 34 35 37 100 7 150 8 30 9 6 10 7 11 8 2 9 3 10 4 10 11 12 13 14 15 18 19 21 22 27 28 30 10 11 12 13 15 16 18 19 23 24 26 27 34 35 37 10 12 13 15 16 18 19 23 24 26 27 34 35 37 10 12 13 15 16 18 19 23 24 26 27 34 35 37 11 12 13 15 16 18 19 23 24 26 27 34 35 37 11 12 13 15 16 18 19 23 24 26 27 34 35 37 10 12 13 15 16 18 19 23 24 26 27 34 35 37 10 10 10 10 10 150 8	CRe Ac Re 00 Torming and nonconformities per 100 ite	Ing and nonconformities per 100 ite 100	and nonconformities per 100 ite 100	nonconformities per 100 ite Ac Re Ac Re Ac Re Ac 5 18 19 21 22 27 28 30 1 9 14 11 16 15 20 17 9 23 24 26 27 34 35 37 7 1 8 2 9 3 10 4 0 6 12 7 14 10 17 11 3 11 17 13 19 17 24 19 7 16 22 20 25 25 31 28 9 23 24 26 27 34 35 37 1 150 250 25 25 31 28	onformities per 100 ite 150	21 22 27 28 30 21 11 16 15 20 17 26 27 34 35 37 20 25 25 31 28 20 25 25 31 28 26 27 34 35 37 26 27 34 35 37 250 25 25 31 28	es per 100 ite Ac Re Ac Be Ac Re Ac Be Ac Re Ac C2 27 28 30 C2 27 28 30 C2 27 28 30 C3 4 35 37 C4 19 C5 25 31 28 C5 25 31 28 C5 25 31 28 C5 25 31 28 C5 25 31 28	er 100 ite C Re Ac C Re Ac C Re Ac C Re Ac C Re Ac 1 25 20 17 4 35 37 1 35 37 1 35 37	00 ite 30 Ac 30 Ac 30 30 11 11 11 11 11 11 11 11 11 11 11 11 11	(suus)	0	Re	314	22.2	38		12 (191	272	34	38 2	+	1	
mit, normal inspection (in percent nonconforming and nonconformities per 100 items) 10																			İ	IX	kc R	4 1							85 4		400	١
Ac Re Ac Re																				4	e Ac	44	9 25	3 56		5 6	5 17	5 29	5 40	3 56	$\perp \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	
Ac Re Ac Res	Ac Re	Ac Re	Ac Re	Ac Re 6 15 53 29 26 35 53 52 53 52 53 52 53 52 53 52 53 52 53 52 53 52 53 52 53 52 53 52 53 53 53 53 53 53 53 53 53 53 53 53 53	Ac Re 6 15 53 29 26 35 53 52 53 52 53 52 53 52 53 52 53 52 53 52 53 52 53 52 53 52 53 52 53 53 53 53 53 53 53 53 53 53 53 53 53	Ac Re 6 15 53 29 26 35 53 52 53 52 53 52 53 52 53 52 53 52 53 52 53 52 53 52 53 52 53 52 53 52 53 53 53 53 53 53 53 53 53 53 53 53 53	Ac Re 6 15 53 29 26 35 53 52 53 52 53 52 53 52 53 52 53 52 53 52 53 52 53 52 53 52 53 52 53 52 53 53 53 53 53 53 53 53 53 53 53 53 53	Ac Re 6 15 53 29 26 35 53 52 53 52 53 52 53 52 53 52 53 52 53 52 53 52 53 52 53 52 53 52 53 53 53 53 53 53 53 53 53 53 53 53 53	Ac Re 6 15 53 29 25 25 25 25 25 20 25 25 25 25 25 25 25 25 25 25 25 25 25	Ac Re 6 15 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 25 25 25 25 25 25 25 25 25 25 25 25	Ac Re 6 15 53 29 25 25 23 29 25 25 25 25 25 25 25 25 25 25 25 25 25	Ac Re 6 15 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 25 25 25 25 25 25 25 25 25 25 25 25	Ac Re 6 15 53 29 26 35 53 52 53 52 53 52 53 52 53 52 53 52 53 52 53 52 53 52 53 53 53 53 53 53 53 53 53 53 53 53 53	Ac Re 6 15 53 29 25 25 23 29 25 25 25 25 25 25 25 25 25 25 25 25 25	Ac Re 6 15 53 29 26 35 53 52 53 52 53 52 53 52 53 52 53 52 53 52 53 52 53 52 53 52 53 52 53 53 53 53 53 53 53 53 53 53 53 53 53	Ac Re 6 15 53 29 26 35 53 52 53 52 53 52 53 52 53 52 53 52 53 52 53 52 53 52 53 52 53 52 53 52 53 53 53 53 53 53 53 53 53 53 53 53 53	Ac Re 6 15 53 29 25 25 25 25 25 20 25 25 25 25 25 25 25 25 25 25 25 25 25	Ac Re 6 15 53 29 25 25 23 29 25 25 25 25 25 25 25 25 25 25 25 25 25		8	Re	45	31	57		16	27	38	48	57		1
mit, normal inspection (in percent nonconforming and nonconformities per 100 items) 10	Ac Re 6 15 53 29 26 35 53 29 25 53 29 26 35 53 29 20 20 20 20 20 20 20 20 20 20 20 20 20	Ac Re 6 15 53 29 25 53 29 25 53 29 25 53 29 25 25 25 25 25 25 25 25 25 25 25 25 25	Ac Re 6 15 53 29 25 53 29 25 53 29 25 53 29 25 25 25 25 25 25 25 25 25 25 25 25 25	Ac Re 6 15 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 25 25 25 25 25 25 25 25 25 25 25 25	Ac Re 6 15 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 25 25 25 25 25 25 25 25 25 25 25 25	Ac Re 6 15 53 29 25 53 29 25 53 29 25 53 29 25 25 25 25 25 25 25 25 25 25 25 25 25	Ac Re 6 15 53 29 25 53 29 25 53 29 25 53 29 25 25 25 25 25 25 25 25 25 25 25 25 25	Ac Re 6 15 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 25 25 25 25 25 25 25 25 25 25 25 25	Ac Re 6 15 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 25 25 25 25 25 25 25 25 25 25 25 25	Ac Re 6 15 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 25 25 25 25 25 25 25 25 25 25 25 25	Ac Re 6 15 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 25 25 25 25 25 25 25 25 25 25 25 25	Ac Re 6 15 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 25 25 25 25 25 25 25 25 25 25 25 25	Ac Re 15 23 29 25 53 26 35 26 35 28 45 28 45 29 26 35 29 29 29 26 35 29 26 35 29 26 35 29 20 20 20 20 20 20 20 20 20 20 20 20 20	Ac Re 6 15 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 25 25 25 25 25 25 25 25 25 25 25 25	Ac Re 6 15 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 25 25 25 25 25 25 25 25 25 25 25 25	Ac Re 6 15 53 29 25 53 29 25 53 29 25 53 29 25 25 25 25 25 25 25 25 25 25 25 25 25	Ac Re 6 15 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 25 25 25 25 25 25 25 25 25 25 25 25	Ac Re 6 15 53 29 25 53 29 25 53 29 25 53 29 25 53 29 25 25 25 25 25 25 25 25 25 25 25 25 25		> 400	Ac Re	←	←			=					> 400	

= use next preceding sample size code letter for which acceptance and rejection numbers are available

= use next subsequent sample size code letter for which acceptance and rejection numbers are available

Ac = Acceptance number

Re = Rejection number


* = use single sampling plan above (or alternatively use code letter G)

= acceptance not permitted at this sample size

D

Table 10-E — Tables for sample size code letter E (Individual plans)

Chart E Operating characteristic curves for single sampling plans (Curves for double and multiple sampling are matched as closely as practicable)

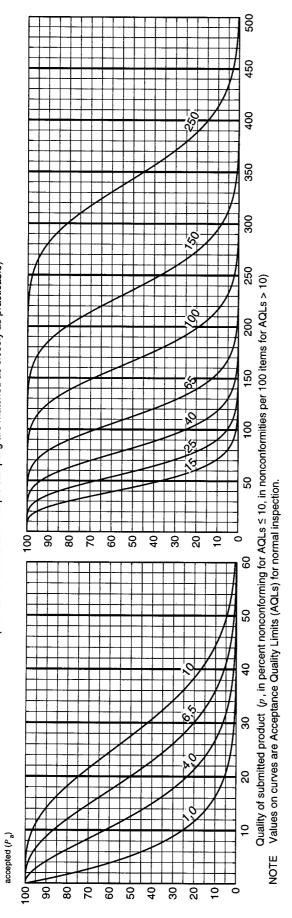


Table 10-E-1 — Tabulated values for operating characteristic curves for single sampling plans

					Acceptar	Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)	ty Limit, r	normal in	spection	(in percei	nt noncor	Jorming	and nonc	onformit	es per 10	00 items)				
Pa	1,0	4,0	6,5	10	1,0	4,0	6,5	10	15	25	X	40	\bigvee	65	\bigvee	100	X	150	X	250
) (in	percent n	p (in percent nonconforming)	ming)						1	، (in non	conformi	p (in nonconformities per 100 items	00 items)						
0'66	0,0773	1,18	3,58	6,95	0,0773	1,14	3,35	6,33	13,7	22,4	27,0	36,7	46,9	5,75	9,67	2'96	132	150	219	238
95,0	0,394	2,81	09'9	11,3	0,395	2,73	6,29	10,5	20,1	30,6	36,1	47,5	59,2	71,1	95,7	115	153	173	246	566
90,0	0,807	4,17	8,80	14,2	0,810	4,09	8,48	13,4	24,2	35,8	41,8	54,0	66,5	79,2	105	125	165	185	261	282
75,0	2,19	7,41	13,4	19,9	2,21	7,39	13,3	19,5	32,5	45,8	52,6	66,3	80,2	94,1	122	144	187	208	288	310
20,0	5,19	12,6	20,0	27,5	5,33	12,9	20,6	28,2	43,6	29,0	2'99	82,1	97,4	113	144	167	213	236	321	344
25,0	10,1	19,4	28,0	36,1	10,7	20,7	30,2	39,3	57,1	74,5	83,1	100	117	134	167	192	241	266	355	379
10,0	16,2	26,8	36,0	44,4	17,7	29,9	40,9	51,4	71,3	90,5	100	119	137	155	190	217	569	295	388	414
2,0	20,6	31,6	41,0	49,5	23,0	36,5	48,4	9'69	6'08	101	Ξ	130	150	168	205	233	286	313	409	435
1,0	29,8	41,3	50,6	58,8	35,4	51,1	64,7	77,3	101	123	134	155	176	196	235	564	321	349	450	477
	1,5	6,5	10	\bigvee	1,5	6,5	10	15	22	X	40	\bigvee	92	\bigvee	100	X	150	X	250	X
				4	Acceptance Qual		, Limit, tig	htened ir	nspection	in perce	ent nonce	nforming	ity Limit, tightened inspection (in percent nonconforming and nonconformities per 100 items)	conformi	ties per 1	00 items	~			

NOTE Binomial distribution used for entries corresponding to inspection for nonconforming items, Poisson for inspection for number of nonconformities.

expected to be Percent of lots

Table 10-E-2 — Sampling plans for sample size code letter E

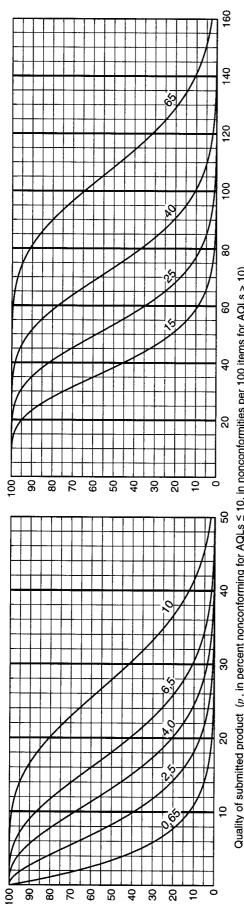
	250	Ac Re	⇐	←			←					250	
	^ 0		45	31	22		16	27	88	48	22	^	
	250	Ac Re	4	25	26		φ	17	29	40	56	Δ	
	X	Ac Re	41 42	23 29	52 53		6 15	16 25	26 35	38 45	52 53	250	
	20	Ac Re	31	22	38		12	- 6	27	34	88		
ems)	-		30	14	37		4	=	19	78	37	\triangle	tems)
Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)	X	Ac Re	27 28	15 20	34 35		3 10	10 17	17 24	25 31	34 35	150	100
ber ,	100	Ac Re	22	16	27		0	4	19	25	27	\Box	s per
nities	-		19 21	14	24 26		77	12 7	17 13	5 20	4 26	$\bot \triangle$	mitie
onform	X	Ac Re	18 1	9 1	23 2		- 8	6	-	16 22	23 24	9	confor
nonc	65	Ac Re	5	=	19		7	10	13	17	0	∇	non
and			13 14	10 7	16 18	-	- +	4	12 8	12	16 18	$-\triangle$	g and
ming	X	Ac Re	12 1	6 1	15 1		0	ი ი	7	11 15	15 1	65	rmin
onfo	6	Ac Re	=	6	13		5	ω	10	12	13	\bigvee	confc
non			9 10	7 5	11 12		0 4	7	9 6	- 6	- 12	$\bot \triangle$	t non
rcent	X	Ac Re	ω	4	10 1		0	2	4	6 11	10 11	40	ercen
(in pe	25	Ac Re	- α	9	10		4	9	ω	0	9	abla	(in p
ction		Re A	2 9	3	7 9		0	5 1	<u> </u>	7 5	6 /	+	ction
nspe	15	Ac B	5	2	9		#	-	2	4	9	25	inspe
rmali	10	: Re	4	က	IJ		3	က	4	5	ഹ	15	ened
it, no		le Ac	3	ص 1	4			<u>о</u>	е Т	- R	4	\perp	tight
y Lin	6,5	Ac Re	6	0	ო		#	0	0	-	e e	10	Limit,
Sualit	4,0	Ac Re	2	7	7		2	Ø	Ø	7	01	6,5	ality
uce (1	0			#	<u> </u>	0	0		+	se Q
Acceptance	2,5	Ac Re		nse	code	letter	Щ					4,0	Acceptance Quality Limit, tightened inspection (in percent nonconforming and nonconformities per 100 items)
Ac	X	Ac Re		nse	code	letter	g					2,5	Acc
	1,5	Ac Re		esn	code	letter	Ω					X	
	1,0	Ac Re	0 1	*			*					1,5	
	< 1,0	Ac Re	⇒	⇒			⇒					< 1,5	
Cumu- lative	sample .	size /	13	80	91		က	ဖ	თ	12	5		
Type of samp-	ling	plan	Single	Double			***		Multiple				

= use next preceding sample size code letter for which acceptance and rejection numbers are available

= use next subsequent sample size code letter for which acceptance and rejection numbers are available

Ac = Acceptance number

Re = Rejection number


* = use single sampling plan above (or alternatively use code letter H)

t = acceptance not permitted at this sample size

Table 10-F — Tables for sample size code letter F (Individual plans)

Chart F Operating characteristic curves for single sampling plans (Curves for double and multiple sampling are matched as closely as practicable)

Quality of submitted product $(p, in percent nonconforming for AQLs \le 10$, in nonconformities per 100 items for AQLs > 10) Values on curves are Acceptance Quality Limits (AQLs) for normal inspection. NOTE

Table 10-F-1 — Tabulated values for operating characteristic curves for single sampling plans

				Accept	Acceptance Qual	lity Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)	ormal insp	ection (in p	ercent no	nconformir	nou pue bu	conformitie	3s per 100	items)			
Pa	0,65	2,5	4,0	6,5	10	0,65	2,5	4,0	9'2	10	15	\bigvee	25		40	X	65
		p (in per	p (in percent nonconforming)	onforming)						on ui) q	p (in nonconformities per 100 items)	ies per 100) items)				
0'66	0,0502	0,759	2,27	4,36	9,75	0,0503	0,743	2,18	4,12	8,93	14,5	17,5	23,9	30,5	37,4	51,7	62,9
95,0	0,256	1,81	4,22	7,14	14,0	0,256	1,78	4,09	6,83	13,1	19,9	23,5	30,8	38,4	46,2	62,2	74,5
90,0	0,525	2,69	5,64	9,02	16,6	0,527	2,66	5,51	8,72	15,8	23,3	27,2	35,1	43,2	51,5	68,4	81,2
75,0	1,43	4,81	8,70	12,8	21,6	1,44	4,81	8,64	12,7	21,1	29,8	34,2	43,1	52,1	61,2	79,5	93,4
20,0	3,41	8,25	13,1	18,1	27,9	3,47	8,39	13,4	18,4	28,4	38,3	43,3	53,3	63,3	73,3	93,3	108
25,0	6,70	12,9	18,7	24,2	34,8	6,93	13,5	19,6	25,5	37,1	48,4	54,0	65,1	76,1	87,0	109	125
10,0	10,9	18,1	24,5	30,4	41,5	11,5	19,4	26,6	33,4	46,4	58,9	65,0	0,77	88,9	101	124	141
2,0	13,9	21,6	28,3	34,4	45,6	15,0	23,7	31,5	38,8	52,6	65,7	72,2	84,8	97,2	109	133	151
1,0	20,6	28,9	35,8	42,1	53,2	23,0	33,2	42,0	50,2	65,5	80,0	87,0	101	114	127	153	172
	1,0	4,0	6,5	10	\bigvee	1,0	4,0	6,5	10	15	X	25	\bigvee	40	\bigvee	65	X
			Ac	Acceptance Quality Lim	Quality Lim	it. tightened inspection (in percent nonconforming and nonconformities ner 100 items)	d inspectic	in (in perce	ant noncon	forming ar	nopuou pu	ormities of	r 100 item	(81			

NOTE Binomial distribution used for entries corresponding to inspection for nonconforming items, Poisson for inspection for number of nonconformities.

expected to be Percent of lots accepted (Pa)

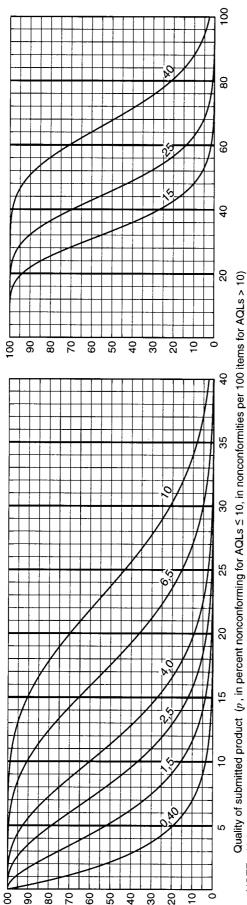
Table 10-F-2 — Sampling plans for sample size code letter F

	_	_	г	т									
	> 65	Ac Re	(←			=					> 65	
	65	Ac Re	21 22	11 16	26 27		2 9	7 14	13 19	20 25	26 27	X	
tems)	X	Ac Re	18 19	9 14	23 24		- 8	6 12	11 17	16 22	23 24	65	items)
er 100 i	40	Ac Re	14 15	7 11	18 19		7 1	4 10	8 13	12 17	18 19	X	per 100
rmities p	X	Ac Re	13	9	16		9 0	6	12	15	16	6 \	ormities
nconfo	25	Ac Re A	11 12	6	13 15		5 (<u>в</u>	10 7	12 11	13 15		onconfc
ou p		ļ	10	5	12		0	က	9	6	12		nd n
ning ar	X	Ac Re	6 8	4 7	10 11		0 4	2 7	4	6 11	10 11	25	ming a
confor	15	Ac Re	7 8	3 6	9 10		0 4	9	8 8	5	9 10	X	nconfor
t non			9	2			4	ري د	9			//	nt no
ercen	2	Ac Re	5	8	9		#	-	2	4	9	15	erce
n (in p	6,5	Ac Re	3 4	1 3	4 5		£ #	e 0	4	2 5	5	10	on (in p
ectio		-	ო	က	4		2	က	က	ო	4	1.0	pecti
l insp	4,0	Ac Re	0	0	က		#	0	0	-	ო	6,5	sui þi
, norma	2,5	Ac Re	1 2	0 2	1 2		# 2	0 2	0	0 2	2	4,0	tightene
Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)	1,5	Ac Re		esn	code	letter	Ø	<u> </u>				2,5	ty Limit,
ınce Qua	X	Ac Re		asn	epoo	letter	I					1,5	ce Quali
Accepta	1,0	Ac Re		asn	code	letter	Ш					X	Acceptance Quality Limit, tightened inspection (in percent nonconforming and nonconformities per 100 items)
	0,65	Ac Re	0 1	*			*					1,0	•
	< 0,65	Ac Re	⇒	⇒			⇒					< 1,0	
Cumu- lative	samble	size	20	13	56		rc	10	15	50	25		
Type of samp-	ling	plan	Single	Double					Multiple				

= use next preceding sample size code letter for which acceptance and rejection numbers are available

use next subsequent sample size code letter for which acceptance and rejection numbers are available II

Ac = Acceptance number


Re = Rejection number

* = use single sampling plan above (or alternatively use code letter J)

= acceptance not permitted at this sample size

Table 10-G — Tables for sample size code letter G (Individual plans)

Chart G Operating characteristic curves for single sampling plans (Curves for double and multiple sampling are matched as closely as practicable)

Quality of submitted product $(p, in percent nonconforming for AQLs \le 10, in nonconformities per 100 items for AQLs > 10)$ Values on curves are Acceptance Quality Limits (AQLs) for normal inspection. NOTE

Table 10-G-1 Tabulated values for operating characteristic curves for single sampling plans

		Π			1			Π			\ /	П
40		39,3	46,5	50,8	58,4	67,7	78,0	88,1	94,5	107	X	
X		32,3	38,9	42,7	49,7	58,3	6,79	77,4	83,4	92'6	40	
25		23,4	28,9	32,2	38,2	45,8	54,4	62,9	68,4	79,5	X	
X		19,1	24,0	27,0	32,6	39,6	47,6	55,6	8,09	71,3	25	
15	0 items)	14,9	19,3	21,9	26,9	33,3	40,7	48,1	53,0	63,0	X	ems)
X	es per 10	11,0	14,7	17,0	21,4	27,1	33,8	40,6	45,1	54,4	15	per 100 it
10	conformiti	80,6	12,4	14,6	18,6	24,0	30,3	36,8	41,1	50,0	X	nformities
6,5	p (in non	5,58	8,17	9,85	13,2	17,7	23,2	29,0	32,9	41,0	10	nd noncor
4,0		2,57	4,27	5,45	7,92	11,5	16,0	20,9	24,2	31,4	6,5	forming a
2,5		1,36	2,56	3,44	5,40	8,36	12,3	16,6	19,7	26,3	4,0	nt noncon
1,5		0,464	1,11	1,66	3,00	5,24	8,41	12,2	14,8	20,7	2,5	(in percer
0,40		0,0314	0,160	0,329	668'0	2,17	4,33	7,20	96'6	14,4	0,65	ightened inspection (in percent nonconforming and nonconformities per 100 items)
10		9,73	13,1	15,1	19,0	23,7	29,0	34,0	37,2	43,2	\bigvee	ightened i
6,5	ing)	5,88	8,50	10,2	13,4	17,5	22,3	27,1	30,1	36,0	10	
4,0	nconform	2,67	4,38	5,56	7,98	4,1	15,4	19,7	22,5	28,1	6,5	Acceptance Quality Limit, t
2,5	ercent no	1,40	2,60	3,49	5,42	8,27	11,9	15,8	18,4	23,8	4,0	Accepta
1,5	p (in p	0,471	1,12	1,67	3,01	5,19	8,19	11,6	14,0	19,0	2,5	
0,40		0,0314	0,160	0,329	0,895	2,14	4,24	6,94	8,94	13,4	0,65	
Pa		0,66	95,0	0'06	75,0	20,0	25,0	10,0	2,0	1,0		
	0,40 1,5 2,5 4,0 6,5 10 0,40 1,5 2,5 4,0 6,5 10 \text{ 16} 2,5 4,0 6,5 10 \text{ 17} 25 \text{ 25}	0,40 1,5 2,5 4,0 6,5 10 0,40 1,5 2,5 4,0 6,5 10 7 15 25 7 p (in percent nonconforming) p (in nonconformities per 100 items) p (in nonconformities per 100 items) p (in nonconformities per 100 items) p (in nonconformities per 100 items)	0,40 1,5 2,5 4,0 6,5 4,0 6,5 4,0 6,5 4,0 6,5 4,0 6,5 4,0 6,5 4,0 6,5 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 <td>0,40 1,5 2,5 4,0 6,5 10 0,40 1,5 2,5 4,0 6,5 10 0,40 1,5 2,5 4,0 6,5 10 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0<td>0,40 1,5 2,5 4,0 6,5 10 0,40 1,5 2,5 4,0 6,5 10 0,40 1,5 2,5 4,0 6,5 10 0,031 0,040 1,5 2,5 4,0 6,5 10 0,031 0,031 0,046 1,36 2,57 5,58 9,08 11,0 14,9 19,1 23,4 32,3 0,160 1,12 2,60 4,38 8,50 13,1 0,160 1,11 2,56 4,27 8,17 12,4 14,7 19,3 24,0 28,9 38,9 0,329 1,67 3,49 5,56 10,2 15,1 0,329 1,66 3,44 5,45 9,85 14,6 17,0 21,9 27,0 32,2 42,7</td><td>0,40 1,5 2,5 4,0 6,5 10 0,40 1,5 2,5 4,0 6,5 10 0,40 1,5 2,5 4,0 6,5 10 0,40 1,5 2,5 4,0 6,5 10 0,40 1,5 2,5 4,0 6,5 11,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0<</td><td>0,40 1,5 2,5 4,0 6,5 10 0,40 1,5 2,5 4,0 6,5 10 0,40 1,5 2,5 4,0 6,5 10 0,40 1,5 2,5 4,0 6,5 10 10 0,40 1,5 2,5 4,0 6,5 10 1,1 2,6 4,27 8,17 12,4 14,7 14,9 19,1 23,4 32,3 0,0314 0,464 1,31 0,464 1,36 2,57 5,58 9,08 11,0 14,9 19,1 23,4 32,3 32,0 32,3 32,3 32,3 32,3 32,3 32,3 32,3 32,3 32,3 32,3 32,3 32,0 32,1 32,1 32,1 32,1 32,1 32,1 32,1 32,1 32,1 32,1 32,1 32,1 32,1 32,1 32,1 32,1 32,1 32,1 32,1 32,1 32,1 32,1 32,1 32,1 32,1 32,1</td><td>0,40 1,5 2,5 4,0 6,5 10 0,40 1,5 2,5 4,0 6,5 10 0,40 1,5 2,5 4,0 6,5 10 0,40 1,5 2,5 4,0 6,5 10 0,40 1,5 2,5 4,0 6,5 10 1,1 2,5 4,2 5,58 9,08 11,0 14,9 14,7 14,0 14,7 14,0 2,67 13,1 0,160 1,11 2,56 4,27 8,17 12,4 14,7 14,7 14,7 14,7 14,7 14,7 14,7 12,4 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7</td><td>0,40 1,5 2,5 4,0 6,5 1,0 1,5 2,5 4,0 6,5 4,0 6,5 4,0 6,5 4,0 6,5 4,0 6,5 4,0 6,5 10 7 25 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7<td>0,40 1,5 2,6 4,0 6,5 1,0 0,40 1,5 2,5 4,0 6,5 10 0,40 1,5 2,5 4,0 6,5 10 0,40 1,5 2,5 4,0 6,5 10 0,40 1,5 2,5 4,0 6,5 10 0,40 1,1 2,6 4,2 5,8 9,0 11,1 2,56 4,2 5,8 11,0 14,0 14,0 14,1 14,0 14,2 14,7 14,7 14,7 14,3 24,0 28,2 3,24 3,44 5,45 9,85 14,6 17,0 21,9 27,0 28,3 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93</td><td>0,40 1,5 2,5 4,0 6,5 4,0 6,5 4,0 6,5 4,0 6,5 4,0 6,5 10 7 15 7 15 7 15 7 15 2,5 4,0 6,5 10 0,40 1,5 2,5 4,0 6,5 10 0,40 1,5 2,5 4,0 1,0 1,1 2,6 1,1 2,6 4,27 8,17 1,1 1,1 2,5 5,5 9,0 1,1 1,4 1,1 2,6 4,27 8,17 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4</td><td>0,40 1,5 2,5 4,0 6,5 10 0,40 1,5 2,5 4,0 6,5 10 3,4 15 2,5 4,0 6,5 10 3,4 15 2,5 4,0 6,5 10 3,4 1,5 2,5 4,0 6,5 10 4,0 1,1 2,5 4,0 6,5 10 1,1 2,5 4,0 1,1 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4</td></td></td>	0,40 1,5 2,5 4,0 6,5 10 0,40 1,5 2,5 4,0 6,5 10 0,40 1,5 2,5 4,0 6,5 10 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 <td>0,40 1,5 2,5 4,0 6,5 10 0,40 1,5 2,5 4,0 6,5 10 0,40 1,5 2,5 4,0 6,5 10 0,031 0,040 1,5 2,5 4,0 6,5 10 0,031 0,031 0,046 1,36 2,57 5,58 9,08 11,0 14,9 19,1 23,4 32,3 0,160 1,12 2,60 4,38 8,50 13,1 0,160 1,11 2,56 4,27 8,17 12,4 14,7 19,3 24,0 28,9 38,9 0,329 1,67 3,49 5,56 10,2 15,1 0,329 1,66 3,44 5,45 9,85 14,6 17,0 21,9 27,0 32,2 42,7</td> <td>0,40 1,5 2,5 4,0 6,5 10 0,40 1,5 2,5 4,0 6,5 10 0,40 1,5 2,5 4,0 6,5 10 0,40 1,5 2,5 4,0 6,5 10 0,40 1,5 2,5 4,0 6,5 11,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0<</td> <td>0,40 1,5 2,5 4,0 6,5 10 0,40 1,5 2,5 4,0 6,5 10 0,40 1,5 2,5 4,0 6,5 10 0,40 1,5 2,5 4,0 6,5 10 10 0,40 1,5 2,5 4,0 6,5 10 1,1 2,6 4,27 8,17 12,4 14,7 14,9 19,1 23,4 32,3 0,0314 0,464 1,31 0,464 1,36 2,57 5,58 9,08 11,0 14,9 19,1 23,4 32,3 32,0 32,3 32,3 32,3 32,3 32,3 32,3 32,3 32,3 32,3 32,3 32,3 32,0 32,1 32,1 32,1 32,1 32,1 32,1 32,1 32,1 32,1 32,1 32,1 32,1 32,1 32,1 32,1 32,1 32,1 32,1 32,1 32,1 32,1 32,1 32,1 32,1 32,1 32,1</td> <td>0,40 1,5 2,5 4,0 6,5 10 0,40 1,5 2,5 4,0 6,5 10 0,40 1,5 2,5 4,0 6,5 10 0,40 1,5 2,5 4,0 6,5 10 0,40 1,5 2,5 4,0 6,5 10 1,1 2,5 4,2 5,58 9,08 11,0 14,9 14,7 14,0 14,7 14,0 2,67 13,1 0,160 1,11 2,56 4,27 8,17 12,4 14,7 14,7 14,7 14,7 14,7 14,7 14,7 12,4 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7</td> <td>0,40 1,5 2,5 4,0 6,5 1,0 1,5 2,5 4,0 6,5 4,0 6,5 4,0 6,5 4,0 6,5 4,0 6,5 4,0 6,5 10 7 25 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7<td>0,40 1,5 2,6 4,0 6,5 1,0 0,40 1,5 2,5 4,0 6,5 10 0,40 1,5 2,5 4,0 6,5 10 0,40 1,5 2,5 4,0 6,5 10 0,40 1,5 2,5 4,0 6,5 10 0,40 1,1 2,6 4,2 5,8 9,0 11,1 2,56 4,2 5,8 11,0 14,0 14,0 14,1 14,0 14,2 14,7 14,7 14,7 14,3 24,0 28,2 3,24 3,44 5,45 9,85 14,6 17,0 21,9 27,0 28,3 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93</td><td>0,40 1,5 2,5 4,0 6,5 4,0 6,5 4,0 6,5 4,0 6,5 4,0 6,5 10 7 15 7 15 7 15 7 15 2,5 4,0 6,5 10 0,40 1,5 2,5 4,0 6,5 10 0,40 1,5 2,5 4,0 1,0 1,1 2,6 1,1 2,6 4,27 8,17 1,1 1,1 2,5 5,5 9,0 1,1 1,4 1,1 2,6 4,27 8,17 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4</td><td>0,40 1,5 2,5 4,0 6,5 10 0,40 1,5 2,5 4,0 6,5 10 3,4 15 2,5 4,0 6,5 10 3,4 15 2,5 4,0 6,5 10 3,4 1,5 2,5 4,0 6,5 10 4,0 1,1 2,5 4,0 6,5 10 1,1 2,5 4,0 1,1 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4</td></td>	0,40 1,5 2,5 4,0 6,5 10 0,40 1,5 2,5 4,0 6,5 10 0,40 1,5 2,5 4,0 6,5 10 0,031 0,040 1,5 2,5 4,0 6,5 10 0,031 0,031 0,046 1,36 2,57 5,58 9,08 11,0 14,9 19,1 23,4 32,3 0,160 1,12 2,60 4,38 8,50 13,1 0,160 1,11 2,56 4,27 8,17 12,4 14,7 19,3 24,0 28,9 38,9 0,329 1,67 3,49 5,56 10,2 15,1 0,329 1,66 3,44 5,45 9,85 14,6 17,0 21,9 27,0 32,2 42,7	0,40 1,5 2,5 4,0 6,5 10 0,40 1,5 2,5 4,0 6,5 10 0,40 1,5 2,5 4,0 6,5 10 0,40 1,5 2,5 4,0 6,5 10 0,40 1,5 2,5 4,0 6,5 11,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0<	0,40 1,5 2,5 4,0 6,5 10 0,40 1,5 2,5 4,0 6,5 10 0,40 1,5 2,5 4,0 6,5 10 0,40 1,5 2,5 4,0 6,5 10 10 0,40 1,5 2,5 4,0 6,5 10 1,1 2,6 4,27 8,17 12,4 14,7 14,9 19,1 23,4 32,3 0,0314 0,464 1,31 0,464 1,36 2,57 5,58 9,08 11,0 14,9 19,1 23,4 32,3 32,0 32,3 32,3 32,3 32,3 32,3 32,3 32,3 32,3 32,3 32,3 32,3 32,0 32,1 32,1 32,1 32,1 32,1 32,1 32,1 32,1 32,1 32,1 32,1 32,1 32,1 32,1 32,1 32,1 32,1 32,1 32,1 32,1 32,1 32,1 32,1 32,1 32,1 32,1	0,40 1,5 2,5 4,0 6,5 10 0,40 1,5 2,5 4,0 6,5 10 0,40 1,5 2,5 4,0 6,5 10 0,40 1,5 2,5 4,0 6,5 10 0,40 1,5 2,5 4,0 6,5 10 1,1 2,5 4,2 5,58 9,08 11,0 14,9 14,7 14,0 14,7 14,0 2,67 13,1 0,160 1,11 2,56 4,27 8,17 12,4 14,7 14,7 14,7 14,7 14,7 14,7 14,7 12,4 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7 14,7	0,40 1,5 2,5 4,0 6,5 1,0 1,5 2,5 4,0 6,5 4,0 6,5 4,0 6,5 4,0 6,5 4,0 6,5 4,0 6,5 10 7 25 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 <td>0,40 1,5 2,6 4,0 6,5 1,0 0,40 1,5 2,5 4,0 6,5 10 0,40 1,5 2,5 4,0 6,5 10 0,40 1,5 2,5 4,0 6,5 10 0,40 1,5 2,5 4,0 6,5 10 0,40 1,1 2,6 4,2 5,8 9,0 11,1 2,56 4,2 5,8 11,0 14,0 14,0 14,1 14,0 14,2 14,7 14,7 14,7 14,3 24,0 28,2 3,24 3,44 5,45 9,85 14,6 17,0 21,9 27,0 28,3 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93</td> <td>0,40 1,5 2,5 4,0 6,5 4,0 6,5 4,0 6,5 4,0 6,5 4,0 6,5 10 7 15 7 15 7 15 7 15 2,5 4,0 6,5 10 0,40 1,5 2,5 4,0 6,5 10 0,40 1,5 2,5 4,0 1,0 1,1 2,6 1,1 2,6 4,27 8,17 1,1 1,1 2,5 5,5 9,0 1,1 1,4 1,1 2,6 4,27 8,17 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4</td> <td>0,40 1,5 2,5 4,0 6,5 10 0,40 1,5 2,5 4,0 6,5 10 3,4 15 2,5 4,0 6,5 10 3,4 15 2,5 4,0 6,5 10 3,4 1,5 2,5 4,0 6,5 10 4,0 1,1 2,5 4,0 6,5 10 1,1 2,5 4,0 1,1 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4</td>	0,40 1,5 2,6 4,0 6,5 1,0 0,40 1,5 2,5 4,0 6,5 10 0,40 1,5 2,5 4,0 6,5 10 0,40 1,5 2,5 4,0 6,5 10 0,40 1,5 2,5 4,0 6,5 10 0,40 1,1 2,6 4,2 5,8 9,0 11,1 2,56 4,2 5,8 11,0 14,0 14,0 14,1 14,0 14,2 14,7 14,7 14,7 14,3 24,0 28,2 3,24 3,44 5,45 9,85 14,6 17,0 21,9 27,0 28,3 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93 3,93	0,40 1,5 2,5 4,0 6,5 4,0 6,5 4,0 6,5 4,0 6,5 4,0 6,5 10 7 15 7 15 7 15 7 15 2,5 4,0 6,5 10 0,40 1,5 2,5 4,0 6,5 10 0,40 1,5 2,5 4,0 1,0 1,1 2,6 1,1 2,6 4,27 8,17 1,1 1,1 2,5 5,5 9,0 1,1 1,4 1,1 2,6 4,27 8,17 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4	0,40 1,5 2,5 4,0 6,5 10 0,40 1,5 2,5 4,0 6,5 10 3,4 15 2,5 4,0 6,5 10 3,4 15 2,5 4,0 6,5 10 3,4 1,5 2,5 4,0 6,5 10 4,0 1,1 2,5 4,0 6,5 10 1,1 2,5 4,0 1,1 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4

Binomial distribution used for entries corresponding to inspection for nonconforming items, Poisson for inspection for number of nonconformities. NOTE

Percent of lots accepted (Pa)

Table 10-G-2 — Sampling plans for sample size code letter G

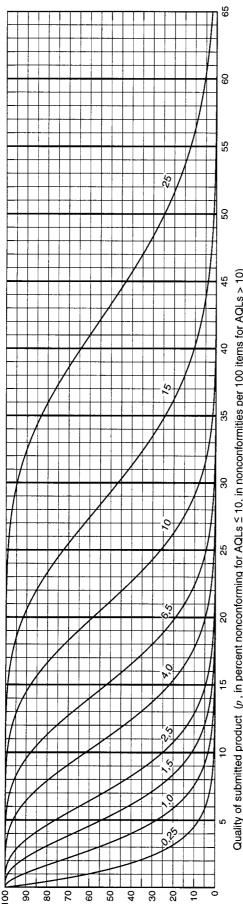
	т-	T		Т			1						т
	v 40	Ac Re	←	←			←					^ 40	
		Re	22	16	27		6	4	19	25	27	\/	
İ	4	Ac	2	=	26		8	7	13	20	26		
(8)		age and	19	4-	24		80	12	17	22	24		us)
item	X	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	8	6	23		_	9	=	16	23	9	iter
100		٦	15	=	19		_	10	13	17	9	//	100
per	25	Ac Re	4		18		_	4	œ	12	8	IX	ber s
ities		122	13	2	16		9	6	12	15	16	1,0	nitie
form	X	Ac Re	72	9	15		0	က	7	Ξ	15	25	forn
con	5	Re	Ξ	6	13		2	8	10	72	5	\/	ncor
lon	=	Ac	5	5	12		0	က	9	თ	12	X	ou p
and		R	6	7	F		4	7	<u>б</u>	÷	Ę	1,0	gan
ning	X	Ac_	ω	4	9		0	7	4	9	9	15	minę
nforr		Re	ω	9	9		4	9	80	ი	10	1/	onfor
ICOL	유	Ac	_	က	6		0	-	က	ß	6	X	oucc
l no	2	æ	9	ည	7		4	5	9	7			nt n
arcer	6,5	Ac Re	5	2	9		#	-	0	4	9	19	erce
] <u>=</u>	0	Re	4	က	Ŋ		<u>့</u> က	က	4	5	2	5	d ui)
) uoi	4,0	Ac Re	က	-	4		#	0	-	7	4	6,5	tion
pect	5	Re	3	က	4		2	ო	ო	ო	4	0	spec
l ins	2,5	Ac	2	0	က		#	0	0	-	ო	4,0	ğ
rma	1,5	Ac Re	2	2	7		2	7	7	7	0	2	tene
it, no	-	Ac	-	0	-		#	0	0	0	-	2,5	tigh
ality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)	1,0	Ac Re		esn	epoo	letter	I					1,5	Acceptance Quality Limit, tightened inspection (in percent nonconforming and nonconformities per 100 items)
Acceptance Qua	X	Ac Re		esn	code	letter	٦					0,1	e Qual
eptai	10	\vdash											otano
Acce	0,65	Ac Re		esn	code	etter	L					X	Accep
	0,40	Ac Re	0 1	*			*					0,65	
	40											35	
	< 0,40	Ac Re	⇒	⇒			⇒					< 0,65	
Cumu- lative	sample	size	32	20	40		ω	16	24	32	40		
Type of samp-	ling	plan	Single	Double					Multiple				

use next preceding sample size code letter for which acceptance and rejection numbers are available

= use next subsequent sample size code letter for which acceptance and rejection numbers are available

Ac = Acceptance number

Re = Rejection number


* = use single sampling plan above (or alternatively use code letter K)

= acceptance not permitted at this sample size

G

Table 10-H — Tables for sample size code letter H (Individual plans)

Chart H Operating characteristic curves for single sampling plans (Curves for double and multiple sampling are matched as closely as practicable)

Quality of submitted product $(p, in percent nonconforming for AQLs <math>\le 10$, in nonconformities per 100 items for AQLs > 10) Values on curves are Acceptance Quality Limits (AQLs) for normal inspection. NOTE

Table 10-H-1 — Tabulated values for operating characteristic curves for single sampling plans

lity Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)	10 0,25 1,0 1,5 2,5 4,0 6,5 10 15 15 25	p (in nonconformities per 100 items)	36 10,1 0,0201 0,297 0,872 1,65 3,57 5,81 7,01 9,54 12,2 15,0 20,7 25,1	72 12.9 0,103 0,711 1,64 2,73 5,23 7,96 9,39 12,3 15,4 18,5 24,9 29,8	1,2 14,5 0,211 1,06 2,20 3,49 6,30 9,31 10,9 14,0 17,3 20,6 27,3 32,5	3,8 17,5 0,575 1,92 3,45 5,07 8,44 11,9 13,7 17,2 20,8 24,5 31,8 37,4	7,2 21,2 1,39 3,36 5,35 7,34 11,3 15,3 17,3 21,3 25,3 29,3 37,3 43,3	1,0 25,2 2,77 5,39 7,84 10,2 14,8 19,4 21,6 26,0 30,4 34,8 43,5 49,9	4,7 29,1 4,61 7,78 10,6 13,4 18,5 23,5 26,0 30,8 35,6 40,3 49,5 56,4	7,0 31,6 5,99 9,49 12,6 15,5 21,0 26,3 28,9 33,9 38,9 43,8 53,4 60,5	1,6 36,3 9,21 13,3 16,8 20,1 26,2 32,0 34,8 40,3 45,6 50,9 61,2 68,7	0 $0,40 $ $1,5 $ $2,5 $ $4,0 $ $6,5 $ $10 $ $15 $ 25	
mit, normal inspectio												10 0,40	
Acceptance Quality Li	4,0 6,5	onconforming)	3,69 6,07 7,	5,36 8,22 9,	6,43 9,54 1	8,51 12,0 13	11,3 15,2 17	14,5 18,8 2	17,8 22,4 24	19,9 24,7 27	24,2 29,2 31	6,5	
1	1,5 2,5	p (in percent nonconforming)	0,886 1,68	1,66 2,78	2,22 3,53	3,46 5,10	5,31 7,29	7,69 10,0	10,3 12,9	12,1 14,8	15,8 18,7	2,5 4,0	
	0,25 1,0		0,0201 0,300	0,103 0,715	0,210 1,07	0,574 1,92	1,38 3,33	2,73 5,29	4,50 7,56	5,82 9,14	8,80 12,6	0,40 1,5	
	P_a		0,66	95,0	0,06	75,0	20,0	25,0	10,0	2,0	1,0		L

Binomial distribution used for entries corresponding to inspection for nonconforming items, Poisson for inspection for number of nonconformities. NOTE

expected to be Percent of lots

accepted (Pa)

Table 10-H-2 — Sampling plans for sample size code letter H

= use next preceding sample size code letter for which acceptance and rejection numbers are available

= use next subsequent sample size code letter for which acceptance and rejection numbers are available

Ac = Acceptance number

Re = Rejection number

* = use single sampling plan above (or alternatively use code letter L)

= acceptance not permitted at this sample size

Table 10-J — Tables for sample size code letter J (Individual plans)

Chart J Operating characteristic curves for single sampling plans (Curves for double and multiple sampling are matched as closely as practicable)

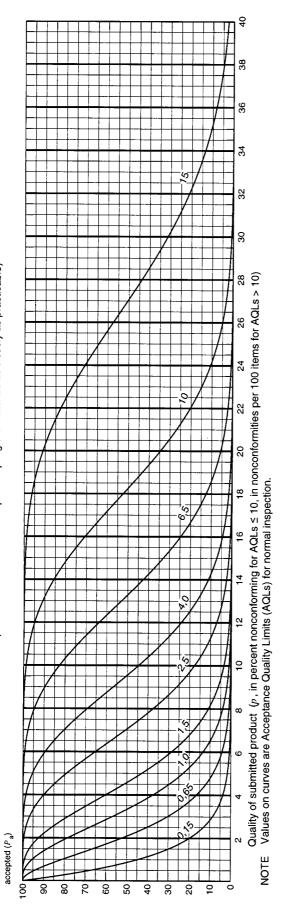


Table 10-J-1 — Tabulated values for operating characteristic curves for single sampling plans

Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)	4,0 6,5 10 15	p (in nonconformities per 100 items)	3,63 4,38 5,96 7,62 9,35 12,9 15,7	4,98 5,87 7,71 9,61 11,6 15,6 18,6	5,82 6,79 8,78 10,8 12,9 17,1 20,3	7,45 8,55 10,8 13,0 15,3 19,9 23,4	9,59 10,8 13,3 15,8 18,3 23,3 27,1	12,1 13,5 16,3 19,0 21,7 27,2 31,2	14,7 16,2 19,3 22,2 25,2 30,9 35,2	16,4 18,0 21,2 24,3 27,4 33,4 37,8	20,0 21,8 25,2 28,5 31,8 38,2 42,9	6,5	
nd nonce	1,5 2,5	p (in r	1,03 2,23	1,71 3,27	2,18 3,94	3,17 5,27	4,59 7,09	6,39 9,28	8,35 11,6	9,69 13,1	12,6 16,4	2,5 4,0	
forming a	1,0		0,545	1,02	1,38	2,16	3,34	4,90	6,65	78,7	10,5	1,5	
noncon	9'0		0,186	0,444	0,665	1,20	2,10	3,37	4,86	5,93	8,30	1,0	
n percent	0,15		0,0126	0,0641	0,132	0,360	0,866	1,73	2,88	3,74	5,76	0,25	
ection (i	10		9,76	11,9	13,2	15,5	18,3	21,3	24,2	26,0	29,5	X	
nal insp	X		7,93	68'6	11,0	13,2	15,8	18,6	21,4	23,2	26,6	10	:
mit, norn	6,5		6,17	7,91	8,95	10,9	13,3	16,0	18,6	20,3	23,6	X	
uality Lir	X	ming)	4,51	00'9	6,90	8,61	10,8	13,3	15,7	17,3	20,5	6,5	
Acceptance Q	4,0		3,73	5,07	5,91	7,50	9,55	11,9	14,3	15,8	18,9	X	•
Accept	2,5	rcent no	2,28	3,32	3,99	5,30	2,06	9,14	1,3	12,7	15,6	4,0	
	1,5	p (in percent nonconfor	1,04	1,73	2,20	3,18	4,57	6,30	8,16	9,41	12,0	2,5	
	1,0	1	0,550	1,03	1,39	2,16	3,33	4,84	6,52	99'2	10,1	1,5	
	0,65		0,187	0,446	0,667	1,20	5,09	3,33	4,78	5,79	8,01	1,0	
	0,15		0,0126	0,0641	0,132	0,359	0,863	1,72	2,84	3,68	5,59	0,25	
	P _a		0,66	92,0	90,0	75,0	20,0	25,0	10,0	2,0	1,0		

Binomial distribution used for entries corresponding to inspection for nonconforming items, Poisson for inspection for number of nonconformities. NOTE

Percent of lots expected to be

Table 10-J-2 — Sampling plans for sample size code letter J

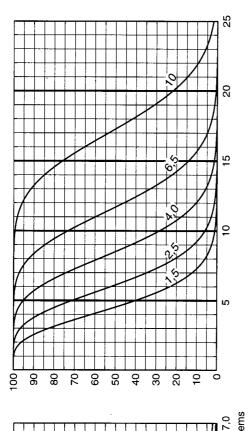
	\. <u>.</u>	Φ	<u> </u>	ľ			1		· <u>-</u>			T	
	> 15	Ac Re	←	←			←					> 15	
	15	Re	22	16	27		6	14	19	25	27		
	ļ -	8	21	=	26		~	7	13	20	26		
(Sr	\bigvee	Ac Re	19	4	24		8	12	17	22	24	2	9
iten	$ \wedge $	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	8	6	23		-	9	Ξ	16	23	7	ا أ
5	9	æ	15	Ę	19		7	10	13	17	19	\/	1
per	Ť	\Ac	4	7	8		-	4	ω	12	18	$ \lambda $	90
lities	∇	Re	13	10	16		9	တ	12	15	16		nifie
form	$ \wedge $	Ac	5	9	15		0	က	7	Ξ	15	9	lofor
l oor	5	Re	F	6	13		5	8	10	12	13	\/	DCO
l nor	6,5	Ac Re	6	ည	12		0	က	9	თ	42	$ \Lambda $	2 9
anc	\bigvee	Re	6	7	Ξ		4	7	6	=	F	2	a
ning	$ \wedge $	Ac	80	4	9		0	8	4	9	10	6,5	Ē
nfon	0	Re	8	9	10		4	9	ω	6	10		Jug
0000	4,0	Ac Re	7	က	6		0		က	Ŋ	6	$ $ \wedge	ouc
l pd	2,5	Ac Re	9	5	7		4	2	9	7	7	0	ent n
erce	ζ,	Ac	5	7	9		#	-	8	4	9	4,0) Serce
i i	1,5	Ac Re	4	ဗ	5		က	က	4	5	Ŋ	5	(j.
ion	_	Ac	3	_	4		#	0	-	0	4	2,5	tion
bect	1,0	Re	3	9	4		2	က	က	က	4	1,5	eds
l in		Ac	5	0	က		#	0	0	-	ო	<u> </u>	n bé
orms	0,65	Ac Re	2	2	7		2	7	2	2	2	1,0	tene
it, n	o,	Ϋ́	-	0	_		#	0	0	0	_		, tigh
ality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)	0,40	Ac Re		asn	code	letter	¥			5		0,65	Limit
nalit											<u></u>	\perp	ality
Acceptance Qu	X	Ac Re		nse	code	letter	-1					0,40	Acceptance Quality Limit, tightened inspection (in percent nonconforming and nonconformities per 100 items)
cept	0,25	Ac Re		esn	epoo	letter	I		,				eptar
Ă	0	_			ŏ	<u>•</u>						\bot	Acc
	0,15	Ac Re	-	*			*					0,25	
			0									+	
	< 0,15	Ac Re	\Rightarrow	⇒			\Rightarrow					< 0,25	
<u>+</u>						_						+*1	
Cumu- lative	sample	size	80	50	100		20	40	09	80	100		
₽ ⁶	_		<u>e</u>	ē					<u>e</u>			1	
Type of samp-	ling	plan	Single	Double					Multiple				

= use next preceding sample size code letter for which acceptance and rejection numbers are available

use next subsequent sample size code letter for which acceptance and rejection numbers are available

Ac = Acceptance number

Re = Rejection number


* = use single sampling plan above (or alternatively use code letter M)

= acceptance not permitted at this sample size

J

Table 10-K — Tables for sample size code letter K (Individual plans)

Chart K Operating characteristic curves for single sampling plans (Curves for double and multiple sampling are matched as closely as practicable)

Quality of submitted product in percent nonconforming or in nonconformities per 100 items Values on curves are Acceptance Quality Limits (AQLs) for normal inspection.

0,

NOTE

Table 10-K-1 — Tabulated values for operating characteristic curves for single sampling plans

Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)	0,40 0,65 1,0 1,5 2,5 4,0 6,5 10	p (in nonconformities per 100 items)	4 0,119 0,349 0,659 1,43 2,32 2,81 3,82 4,88 5,98 8,28 10,1	0,284 0,654 1,09 2,09 3,18 3,76 4,94 6,15 7,40 9,95 11,9	3 0,425 0,882 1,40 2,52 3,72 4,35 5,62 6,92 8,24 10,9 13,0	0,769 1,38 2,03 3,38 4,76 5,47 6,90 8,34 9,79 12,7 14,9	1,34 2,14 2,94 4,54 6,14 6,94 8,53 10,1 11,7 14,9 17,3	2,15 3,14 4,09 5,94 7,75 8,64 10,4 12,2 13,9 17,4 20,0	3,11 4,26 5,34 7,42 9,42 10,4 12,3 14,2 16,1 19,8 22,5	3,80 5,04 6,20 8,41 10,5 11,5 13,6 15,6 17,5 21,4 24,2	5,31 6,72 8,04 10,5 12,8 13,9 16,1 18,3 20,4 24,5 27,5	0,65 1,0 1,5 2,5 7,0 6,5 6,5 10	
nities per 100 items)	-	in nonconformities pe	1,43 2,32	2,09 3,18	3,72	4,76	6,14	7,75	9,42	10,5	12,8	X	
orming and nonconfor	9'0	d	0,349	0,654	0,882	1,38	2,14	3,14	4,26	5,04	6,72	1,0 1	
ercent nonconfe	0,10		10,4 0,00804	12,2 0,0410	13,3 0,0843	15,1 0,230	17,3 0,555	19.6 1,11	21,9 1,84	23,3 2,40	26,0 3,68	0,15	
inspection (in p	X		8,55	10,2	11,1	12,8	14,9	17,1	19,3	20,6	23,2	01	
ty Limit, normal	6,5	g)	5,00 6,15	1 6,26 7,54	9 7,01 8,37	4 8,39 9,86	1 10,1 11,7	3 12,0 13,7	13,9 15,7	2 15,1 17,0	5 17,5 19,4	6,5	
Acceptance Quali	4,0	nonconforming	2,86 3,90	3,81 5,01	4,39 5,69	5,50 6,94	6,92 8,51	8,54 10,3	10,2 12,1	11,3 13,2	13,4 15,5	4,0	
A	1,5 2,5	p (in percent nonconfc	1,45 2,36	2,11 3,22	2,54 3,76	3,39 4,79	4,52 6,12	5,88 7,66	7,29 9,24	8,23 10,3	10,2 12,3	2,5	
	0,65 1,0		0,351 0,664	0,657 1,10	0,885 1,40	1,38 2,03	2,13 2,93	3,11 4,05	4,20 5,27	4,95 6,09	6,55 7,81	1,0 1,5	
	0,10 0,40		0,00804 0,119	0,0410 0,285	0,0843 0,426	0,230 0,769	0,553 1,34	1,10 2,14	1,83 3,08	2,37 3,74	3,62 5,19	0,15 0,65	
	$P_{\rm a}$		0'66	95,0	0,06	75,0	90,09	25,0	10,0	5,0	1,0		

Binomial distribution used for entries corresponding to inspection for nonconforming items, Poisson for inspection for number of nonconformities. NOTE

expected to be accepted (P_a) Percent of lots

70

9 50

8

40

30 20 9

Table 10-K-2 — Sampling plans for sample size code letter K

<u></u>	Т	(1)	ſ	Γ			T						Τ
	\ 5	Ac Re	←	←			←					> 10	
		Re	22	16	27		თ	4	19	25	27		7
	100	\ \ \ \	2	=	26		0	_	13	20	26	X	
(9)		/ æ	19	4	24		ω	12	17	22	24		ns)
item		Ac Re	8	6	23		_	9	-	16	23	9) iter
1 6	5	8	15	=	19		2	10	13	17	19		100
per	6,5	Ac Re	4		\$		-	4.	ω	12	48	IX	be!
ities		Re	13	9	16	-	9	ი	12	15	9		nitie
lorm	$ \Lambda $	Ac.	12	9	15		0	ო	7	Ξ	15	6,5	forn
Con	<u> </u>	28	Ξ	6	13		5	8	10	12	6		ncor
lou	4,0	Ac Re	5	5	12		0	က	9	ი	12	IX	9 2
and	\bigvee	Re	6		=		4	_	6	=	=		and
ning	$ \Lambda $	Ac	8	4	10		0	7	4	9	10	4,0	ming
forr	2	l e	8	9	9		4	9	ω	6	10	1/	nfor
ncor	2,5	Ac Re	7	_ ღ	თ		0	_	က	2	თ	X	ouc
t no	7,	Re	9	22	7		4	2	9		7	<u> </u>	nt no
uality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)	-	Ac F	5	2	9		#	_	2	4	9	2,5	lity Limit, tightened inspection (in percent nonconforming and nonconformities per 100 items)
n pe		e e	4	m	2		ო	က	4	Ŋ	2	1	in p
) no	0,1	Ac Re	ဗ	-	4		#	0	_	8	4	1,5	ion (
ecti	5	e e	က	က	4		N	က	က	က	4	+-	pect
insp	0,65	Ac Re	Ø	0	က		#	0	0	_	ဗ	1,0	d ins
rmal	o	۾	7	7	N		N	2	~	2	N	2	ene
no.	0,40	Ac Re	-	0	_		#	0	0	0	-	0,65	tight
Limit	5	۾		0)		<u></u>							mit,
ality	0,25	Ac Re		nse	code	letter	_					0,40	ţ ∵
no	\/	g,		Φ	<u>o</u>	<u>-</u>	-					2	Juali
Acceptance Qu	X	Ac Re		nse	code	letter	Σ					0,25	Acceptance Qua
epta	5	۾		Φ	<u>o</u>	<u></u>							ptan
Acc	0,15	Ac Re		nse	code	letter	7					X	\cce
	0	æ	-										4
	0,10	Ac Re	0	*			*					0,15	
	10	\vdash		-		+						2	
	< 0,10	Ac Re	⇒	⇒			\Rightarrow					< 0,15	
3.0												'-	
Cumu- lative	sample	size	125	80	160	İ	32	64	96	128	160		
	Ó					_						_	
Type of samp-	ling	plan	Single	Double					Multiple				
Typ saı	≝	ם	Sir	Do					M				

= use next subsequent sample size code letter for which acceptance and rejection numbers are available

Ac = Acceptance number

Re = Rejection number

* = use single sampling plan above (or alternatively use code letter N)

= acceptance not permitted at this sample size

Table 10-L — Tables for sample size code letter L (Individual plans)

Chart L Operating characteristic curves for single sampling plans (Curves for double and multiple sampling are matched as closely as practicable)

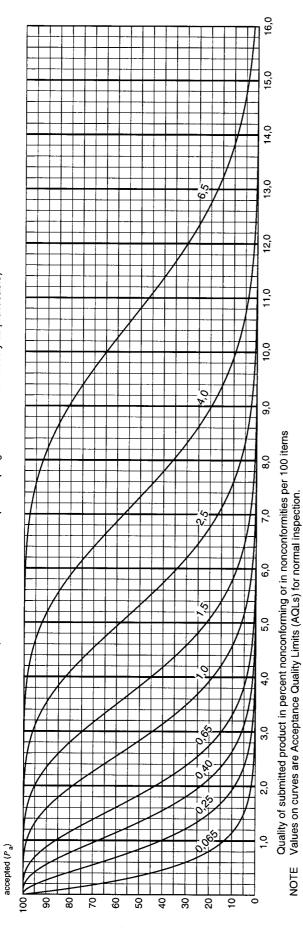


Table 10-L-1 — Tabulated values for operating characteristic curves for single sampling plans

	_	$\overline{}$			_		_	T-				7
6,5		6,29	7,45	8,12	9,34	10,8	12,5	14,1	15,1	17,2	X	
X		5,17	6,22	6,84	7,95	9,33	10,9	12,4	13,3	15,3	6,5	
4,0		3,74	4,62	5,15	6,12	7,33	8,70	10,1	10,9	12,7	X	
X	s)	3,05	3,84	4,32	5,21	6,33	7,61	8,89	9,72	11,4	4,0	
2,5	30 item	2,39	3,08	3,51	4,31	5,33	6,51	7,70	8,48	10,1	X	
X	s per 1	1,75	2,35	2,72	3,42	4,33	5,40	6,50	7,22	8,70	2,5	٦
1,5	formitie	1,45	1,99	2,33	2,98	3,83	4,84	5,89	6,57	8,00	X	100 item
1,0	noncon	0,893	1,31	1,58	2,11	2,84	3,71	4,64		6,55	1,5	ioc per
0,65	p (in	0,412	0,683	0,872	1,27	1,84	2,55	3,34	3,88	5,02	0,1	onformi
0,40		0,218	0,409		0,864	1,34	1,96	2,66	3,15	4,20	0,65	and pag
0,25		0,074	0,178		\vdash	0,839	1,35	1,94	2,37	3,32	0,40	forming
0,065		,00503		,0527	\vdash		0,693	1,15	1,50	2,30	0,10	Quality Limit tightened inspection (in percent popoonforming and popoonformities per 100 items)
6,5	_		7,57			10,8	12,4	13,8	14,8	16,6	X	nercen
X		\vdash	6,31			9,32	10,8	12,2	13,1	14,8	6,5	ection (i
4,0		3,80	4,68			7,32	8,63	9,91	10,7	12,4	X	asui peu
X		3,10	3,89	4,36	5,23	6,32	7,55		9,54	11,1	4,0	it. tiahter
2,5	ning)	2,42	3,11		4,33	5,33	6,46	2,60		9,82	X	ality I im
X	rconfor	1,77	2,37	2,73	3,43	4,33	5,36	6,42	7,10	8,50	2,5	
1,5	ent nor	1,47	2,01	2,34	2,99	3,83	4,81		6,47	7,82	X	Acceptance
0,1	(in perc	006'0	1,31	1,58	2,11	2,83	3,69			_	1,5	
0,65	d		989'0	0,875	1,27	1,83	2,54	3,31	3,83	_	1,0	
0,40					0,864	1,33	1,95	2,64	3,11	4,14		
0,25						0,838	1,34	1,93	2,35	3,27	-	
0,065				_			\dashv	1,14	1,49	2,28	\dashv	
م ه		99,0	95,0	0,06	75,0 (50,0	25,0 (10,0	2,0	1,0	!	
	0,065 0,25 0,40 0,65 1,0 1,5 2,5 4,0 6,5 0,065 0,25 0,40 0,65 1,0 1,5 2,5 4,0 2,0 0,065 0,25 0,40 0,65 1,0 1,5 2,5 4,0 2,0 1,0 1,5 2,5 2,5 2,0 1,0 1,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2	0,065 0,25 0,40 0,65 1,0 1,5 2,5 4,0 4,0 6,5 0,065 0,25 0,40 0,65 1,0 1,5 2,5 4,0	0,065 0,25 0,40 0,65 1,0 1,5 2,5 4,0 6,0 6,0 6,0 6,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1	0,065 0,25 0,40 0,65 1,0 1,5 7, 2,5 7,0 2,6 0,065 0,25 0,40 0,65 0,25 0,40 0,65 0,25 0,40 0,65 0,25 0,40 0,65 0,25 0,40 0,65 0,178 0,410 0,686 1,31 2,01 2,37 3,11 3,89 4,68 6,31 7,57 0,0256 0,178 0,410 0,688 1,31 2,01 2,37 3,11 3,89 4,68 6,31 7,57 0,0256 0,178 0,409 0,683 1,31 1,99 2,35 3,08 3,84 4,62 6,22	0,065 0,25 0,40 0,65 1,0 1,5 7,0 1,5 7,0 1,5 7,0 1,5 7,0 1,5 7,0 1,5 7,0 1,5 7,0 1,5 1,5 7,0 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5	0,065 0,25 0,40 0,65 1,0 1,5 7,0 1,5 7,0 1,5 7,0 1,5 7,0 1,5 1,0 1,5 7,0 1,5 1,0 1,5 7,0 1,5 1,0 1,5 7,0 1,5 1,0 1,5 1,0 1,5 1,0 1,5 1,0 1,5 1,0 1,5 1,0 1,5 1,0 1,5 1,0 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5	0,065 0,25 0,40 0,65 1,0 1,5 X, 2,5 X	0,065 0,25 0,40 0,65 1,0 1,5 X, 2,5 X	0,0065 0,25 0,40 0,65 1,0 1,5 X, 2,5	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	1. 1. 1. 1. 1. 1. 1. 1.	Colore C

NOTE Binomial distribution used for entries corresponding to inspection for nonconforming items, Poisson for inspection for number of nonconformities.

Table 10-L-2 — Sampling plans for sample size code letter L

	1 .			Τ								1	ï
	> 6,5	Ac Re	=	←			←					> 6,5	
	6,5	Re	22	16	27		6	4	19	25	27		
	9	Ac	21	=	26		5	7	13	20	26	\land	
(SC	\bigvee	Re	19	4	24		8	12	17	22	24	6,5	ms)
iten		Ac	18	6	23		-	9	=	16	23	9	o ite
100	4,0	Re	15	=	19		7	10	13	17	19		ir 10
b per	4	β	4	_	18		-	4	ω	12	18	Λ	ed s
lities	\bigvee	Ac Re	13	우	16		9	6	12	15	16	4,0	mitie
form	\triangle	Ac	5	ဖ	15		0	ო	7	Ξ	15	4	nfori
ncor	2,5	Ac Re	=	6	13		5	œ	10	12	13		ouco
ou p	2	Ac	우	5	12		0	က	9	თ	12	Λ	ou pt
gane	\bigvee	Ac Re	ი	7	Ξ		4	7	ი	Ξ	Ξ	2,5	ıg ar
ming	\triangle	_	8	4	9		0	7	4	9	10	2	rmir
l Ju	τč	Ac Re	ω	9	유		4	9	∞	6	9		onfo
) ouc	_	Ac	2	က	6		0	-	က	5	6	//	ouc
l i	0,1	Ac Re	9	5	7		4	5	9	7	7	1,5	ent r
erce		Ac	5	7	9		#		Ø	4	9		perc
(in p	0,65	Ac Re	4	က	5		က	က	4	5	ß	0,1	ı (in
tion	$\stackrel{\circ}{\vdash}$		3	-	4		#	0	_	N	4		ction
spec	0,40	Ac Re	3	က	4		8	က	က	က	4	0,65	edsı
al in	$\stackrel{ ho}{propto}$	-	2	0	က		#	0	0	-	က	0	ed ir
orm	0,25	: Re	2	2	8		7	0	0	2	8	0,40	hten
lit, n	0	Ac	-	0	_		#		0	0			t, tigl
Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)	0,15	Ac Re		nse	code	letter	Σ					0,25	Acceptance Quality Limit, tightened inspection (in percent nonconforming and nonconformities per 100 items)
o Qui	\bigvee	Ac Re		nse	epoo	letter	z					0,15	Quali
otano	/\	_											ance
Accel	0,10	Ac Re		nse	code	letter	ᅩ						Accept
	0,065	Ac Re	0 1	*			*					0,10	
	< 0,065	Ac Re				+						< 0,10	
		Ac	⇒	⇒			⇒	-				0 0	
Cumu- lative	sample	size	200	125	250		50	100	150	200	250		
Type of samp-	ling	plan	Single	Double					Multiple				
Ĺ.,						1						1	

= use next subsequent sample size code letter for which acceptance and rejection numbers are available

= Acceptance number Ac Re

Rejection number

= use single sampling plan above (or alternatively use code letter P)

acceptance not permitted at this sample size

Table 10-M — Tables for sample size code letter M (Individual plans)

Chart M Operating characteristic curves for single sampling plans (Curves for double and multiple sampling are matched as closely as practicable)

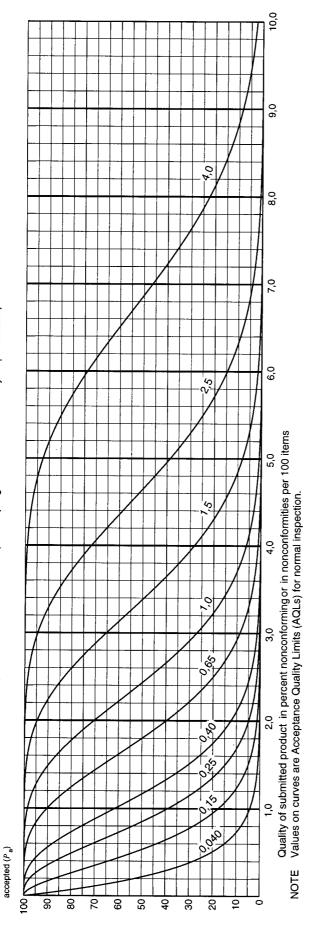


Table 10-M-1 — Tabulated values for operating characteristic curves for single sampling plans

	0		86	<u>ي</u>	16	33	 82	35	×	9	<u>_</u> و	\bigvee	1
	4,0	7	8 3,99	5 4,73	5,16	5,93	3 6,88	0 7,92	8,95	09'60	10,9	X	-
	X		3,28	3,95	4,34	5,05	5,93	6,90	7,86	8,47	9,71	4,0	
	2,5		2,37	2,94	3,27	3,89	4,66	5,52	6,39	6,95	80'8	X	
		us)	1,94	2,44	2,74	3,31	4,02	4,83	5,64	6,17	7,24	2,5	
	1,5	100 iter	1,51	1,96	2,23	2,74	3,39	4,13	4,89	5,38	6,40	\setminus	
(SI	X	es per	Ξ,	1,49	1,72	2,17	2,75	3,43	4,13	4,58	5,52	1,5	ns)
100 item	1,0	p (in nonconformities per 100 items)	0,923	1,26	1,48	1,89	2,43	3,07	3,74	4,17	5,08	X	100 iter
ties per	0,65	nonco	0,567	0,830	1,00	1,34	1,80	2,36	2,94	3,34	4,16	1,0	ities per
conformi	0,40	n) d	0,261	0,434	0,554	0,805	1,17	1,62	2,12	2,46	3,19	0,65	conform
and non	0,25		0,138	0,260	0,350	0,548	0,849	1,24	1,69	2,00	2,67	0,40	and nor
forming	0,15		0,047	0,113	0,169	0,305	0,533	0,855	1,23	1,51	2,11	0,25	forming
Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)	0,040		0,00319	0,0163	0,0334	0,0913	0,220	0,440	0,731	0,951	1,46	0,065	Quality Limit, tightened inspection (in percent nonconforming and nonconformities per 100 items)
n percen	4,0		4,05	4,78	5,20	5,95	6,87	7,87	8,84	9,46	10,7	\bigvee	in percei
ection (ir	X		3,33	3,99	4,37	5,07	5,92	98'9	7,77	8,36	9,51	4,0	ection (
mal insp	2,5		2,40	2,96	3,29	3,90	4,65	5,49	6,33	98'9	7,93	X	ned insp
imit, non	\bigvee		1,95	2,46	2,76	3,32	4,02	4,81	5,59	6,10	7,12	2,5	it, tighte
Quality L	1,5	rming)	1,53	1,97	2,24	2,74	3,38	4,11	4,85	5,33	6,29	X	uality Lin
Acceptance (X	\sim	1,12	1,50	1,73	2,17	2,75	3,41	4,09	4,54	5,44	1,5	
Acce	1,0	p (in percent nonconfo	0,929	1,27	1,48	1,89	2,43	3,06	3,71	4,13	5,01	\bigvee	Acceptance
į	0,65	(in per	0,570	0,833	1,00	1,34	1,80	2,35	2,92	3,31	4,11	1,0	
	0,40	d	0,262	0,435	0,555	0,805	1,16	1,62	2,11	2,44	3,15	9,0	
	0,25		0,139	0,260	0,350	0,549	0,848	1,24	1,68	1,99	2,64	0,40	
	0,15		0,047	0,113	0,169	908'0	0,532	0,853	1,23	1,50	2,09	0,25	
	0,040		0,00319	0,0163	0,0334	0,0913	0,220	0,439 (0,728	0,947	1,45	0,065	
	Ll		0 0'66	95,0	0,06	75,0 (20,0	25,0	10,0	2,0	0,		

NOTE Binomial distribution used for entries corresponding to inspection for nonconforming items, Poisson for inspection for number of nonconformities.

Table 10-M-2 — Sampling plans for sample size code letter M

Type of samp-	Cumu- lative			Accept	Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)	ality Limi	t, norm	al ins	pecti	on (in	perc	ent n	oncor	form	ing a	u pu	oncor	formi	ties p) Jer 1(00 ite	(sw			
ling	sample	< 0,040	0,040	0,065	X	0,10	0,15	0,	0,25	0,40		0,65	1,0		X	\ /	1,5	\triangle	\/	2,5			4,0	-	< 4,0
plan	size	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re		Ac Re	Ac Re		Ac Re	Ac Re		Ac Re	_	Ac Re	Ac	Re	Ac Re	<u> </u>	Ac Re	Ac Re	↓	Ac Re
Single	315	⇒	0 1				1 2	7	က	က	4 5	9	7	8	80	9 10	11	12	13	1 4 1	15 18	19	21	22	(=
Double	200	⇒.	*	esn	esn	esn	0 2	0	3	-	3 2	5	က	9	4	7 5	6	9	10	7 11	9	14	=	16	=
	400			opoo	epoo	epoo .	1 2	က	4	4	5	7	6	<u> </u>	10 1	11 12	2 13	15	16_1	18	19 23	24	26	27	
				letter	letter	letter																			
	80	⇒	*		۵	Z	#	#	8	#	# ®	4	0	4	, 0	0	ß	0	9		7	8	0	თ	(=
	160						0 2	0	ო	0	3	ſΩ	_	9	8	7 3	ω	က	6	4 10	9	12		4	
Multiple	240						0	0	က	-	4 2	9	ო	80	4	9	10	7	-21	8 13	3 1	17	13	19	··
	320						0 2	-	က	2	5	7	ω	6	6 11	- 6	12	=	15_1	12 1	17 16	22	20	25	
	400						1	က	4	4	2 6	7	ი	6	10 1	11 12	2 13	15	16	18 19	9 23	24	26	27	
		< 0,065	0,065	X	0,10	0,15	0,25	o,	0,40	0,65	-	0,1			1,5	/ \	\bigvee	2,5	10	X		4,0	X	1.	> 4,0
			•	Acceptance Quality Limit, tightened inspection (in percent nonconforming and nonconformities per 100 items)	าce Qual	ity Limit,	tighten	ed in	spect	tion (ii	n per	cent	nonco	nforr	ming	and r	oouot	nform	nities	per 1	00 ite	sms)			

= use next subsequent sample size code letter for which acceptance and rejection numbers are available

= Acceptance number Ac Re

= Rejection number

= use single sampling plan above (or alternatively use code letter Q)

acceptance not permitted at this sample size

Table 10-N — Tables for sample size code letter N (Individual plans)

Chart N Operating characteristic curves for single sampling plans (Curves for double and multiple sampling are matched as closely as practicable)

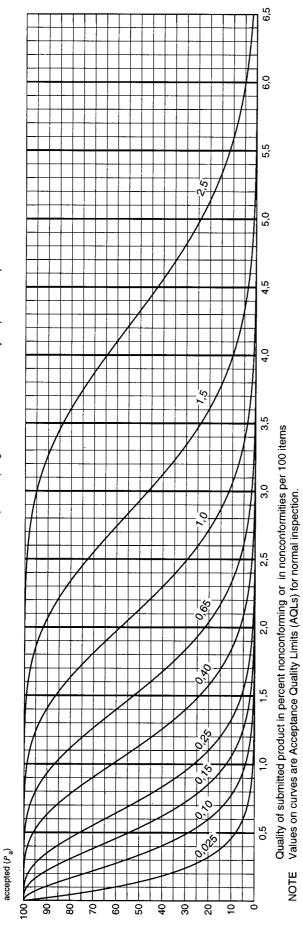


Table 10-N-1 — Tabulated values for operating characteristic curves for single sampling plans

	1,0 7,15 2,5	ns)	2 1,50 2,07 2,51	1,85 2,49 2,98	6 2,73 3,25	3,18 3,74	3,73 4,33	4,35 4,99	4,95 5,64	5,34 6,05	6,12 6,87	2,5	
	X	ns)	1,50			3,1	3,7;	ಹ್	<u>o</u> č	ň	÷	Ŋ	ı
	X	ns)	Ŀ	1,85	9	1 _			-			2,	
	(1,0	ns)	~		2,06	2,45	2,93	3,48	4,03	4,38	5,09	X	
	1,0		1,22	1,54	1,73	2,08	2,53	3,04	3,56	3,89	4,56	1,5	
	\ /	100 iter	0,954	1,23	1,40	1,72	2,13	2,60	3,08	3,39	4,03	X	
(St	\setminus	es per	0,701	0,939	1,09	1,37	1,73	2,16	2,60	2,89	3,48	1,0	(Su
100 iten	99'0	p (in nonconformities per 100 items)	0,581	0,796	0,931	1,19	1,53	1,94	2,35	2,63	3,20	X	r 100 ite
ities per	0,40	nonco	0,357	0,523	0,630	0,844	1,13	1,48	1,85	2,10	2,62	0,65	nities pe
conform	0,25	p (ir	0,165	0,273	0,349	0,507	0,734	1,02	1,34	1,55	2,01	0,40	nconforn
and non	0,15		0,087	0,164	0,220	0,345	0,535	0,784	1,06	1,26	1,68	0,25	and no
forming	0,10		60'0	0,071	0,106	0,192	0,336	0,539	0,778	0,949	1,33	0,15	nforming
Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)	0,025		0,00201	0,0103	0,0211	0,0575	0,139	0,277	0,461	0,599	0,921	0,040	uality Limit, tightened inspection (in percent nonconforming and nonconformities per 100 items)
n percen	2,5		2,54	3,00	3,26	3,75	4,33	4,97	5,60	5,99	6,78	X	(in perce
ection (i	X		2,09	2,50	2,75	3,19	3,73	4,33	4,92	5,29	6,04	2,5	pection
mal insp	7,5		1,51	1,86	2,07	2,45	2,93	3,47	4,00	4,34	5,03	X	ened ins
imit, nor	X		1,23	1,54	1,74	2,09	2,53	3,03	3,54	3,86	4,51	1,5	nit, tight
Quality L	1,0	ming)	0,959	1,24	1,41	1,73	2,13	2,60	3,06	3,37	3,99	X	uality Lir
Acceptance (X	nconfo	0,705	0,942	1,09	1,37	1,73	2,15	2,59	2,87	3,45	1,0	Acceptance Q
Acce	0,65	cent no	0,584	0,799	0,933	1,19	1,53	1,93	2,34	2,61	3,17	X	Accep
	0,40	p (in percent nonconfo	0,358	0,524	0,632	0,845	1,13	1,48	1,85	2,09	2,60	0,65	
	0,25	d	0,165	0,274	0,349	0,507	0,734	1,02	1,33	1,54	1,99	0,40	
	0,15		0,087	0,164	0,221	0,346	0,534	0,783	1,06	1,25	1,67	0,25	
	0,10		0,03	0,071	0,106	0,192	0,335	0,538	9///0	0,945	1,32	0,15	
	0,025		0,00201	0,0103	0,0211	0,0575	0,139	0,277	0,459	0,597	0,917	0,040	
	σ' _a		0'66	95,0	0,06	75,0	50,0	25,0	10,0	5,0	1,0		

NOTE Binomial distribution used for entries corresponding to inspection for nonconforming items, Poisson for inspection for number of nonconformities.

expected to be Percent of lots

Table 10-N-2 — Sampling plans for sample size code letter N

	2	æ										2	
	> 2,5	Ac Re	←	←			←					> 2,5	
	5	Re	22	16	27		0	14	19	25	27		
	2,5	Ac Re	2	=	26		7	/	13	20	26		
(SI		Re	19	41	24		8	12	17	22	24	5	100
item		Ac	18	6	23		-	9	Ξ	16	23	12,	اغز
8	1,5	Re	15	11	19		7	10	13	17	19	\bigvee	Š
per	Ľ	Ac	4	7	18		-	4	8	12	18	/	90
ities		Ac Re	13	9	16		9	თ	12	15	16	1,5	l i
form	\triangle	Ac	72	9	15		0	က	7	#	15		nfor
l con	0,1	Ac Re	Ξ	6	13		ß	ω	9	12	13		200
log		Ϋ́	9	5	12		0	က	9	თ	5	/	2
) and	$ \bigvee$	æ	6	^	Ξ		4	7	თ	Ξ	=	1,0	1 2
min (Ϋ́	8	4	9		0	0	4	9	9	-	i i
nfor	0,65	Ac Re	8	ဖ	10		4	9	80	6	9		outo
ouc	o		7	က	6		0	-	ო	2	6	Λ	200
i i	0,40	Ac Re	9	S.	7		4	5	9	7	7	0,65	entre
erce	0		5	7	9		#	-	7	4	9	0,	l ad
(in p	0,25	Ac Re	4	က	2		က	ო .	4	5	5	0,40	i)
fion	L		3	-	4		#	0		0	4	l°	ction
bec	0,15	. Re	3	က	4		7	က	က	က	4	0,25	eust
a E	L	Ac	2	0	က		#	0	0		က	$\stackrel{\downarrow \circ}{\vdash}$	i be
l orm	0,10	Ac Re	2	7	0		0	0	8	8	Ø	0,15	hten
nit, r				0	_		#		0			+	it. tio
ality Lir	0,065	Ac Re		nse	code	letter	۵.					0,10	tv Limi
e Qua	\bigvee	Ac Re		nse	code	letter	σ	·				0,065	Ouali
tanc	\triangle				 	<u>e</u>						o,	nce
Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)	0,040	Ac Re		nse	code	letter	Σ					X	Acceptance Quality Limit tightened inspection (in percent ponconforming and ponconformities per 100 items)
	0,025	Ac Re	-	*			*	_				0,040	•
		-	0										
	< 0,025	Ac Re	\Rightarrow	⇒			⇒					< 0,040	
<u> </u>	-	∢						*****				V	
Cumu- lative	sample	size	500	315	630		125	250	375	200	625		
		_	Φ	<u></u>		\dashv						1	
Type of samp-	ling	plan	Single	Double					Multiple				
<u> </u>													

use next subsequent sample size code letter for which acceptance and rejection numbers are available

Ac = Acceptance number

Re = Rejection number

* = use single sampling plan above (or alternatively use code letter R)

acceptance not permitted at this sample size

Table 10-P — Tables for sample size code letter P (Individual plans)

Chart P Operating characteristic curves for single sampling plans (Curves for double and multiple sampling are matched as closely as practicable)

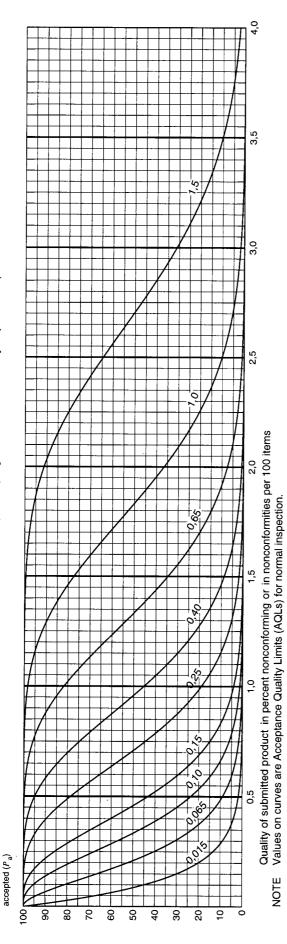


Table 10-P-1 — Tabulated values for operating characteristic curves for single sampling plans

<u> </u>				!		Accel	ptance (Juality Li	mit, norr	nal inspe	ction (in	percen	Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)	orming a	ouou pu	onformit	es per 1	00 items						
Pa	0,015	0,065	0,10	0,15	0,25	0,40	X	0,65	X	1,0	X	1,5	0,015	0,065	0,10	0,15	0,25	0,40	X	0,65	X	6, _	\bigvee	1,5
				d	in per (in	p (in percent nonconforming)	nconfor	ming)								i (in	noncon	formities	s per 10	p (in nonconformities per 100 items)				
0'66		0,00126 0,0186 0,0546 0,103 0,224	0,0546	0,103	0,224	0,364	0,440	865'0	0,765	986'0	1,30	1,58	0,00126	0,0186 0,0545	0,0545	0,103	0,223	0,363	0,438	0,596	0,762 (0,935	1,29	1,57
95,0		0,00641 0,0444 0,102	0,102	0,171	0,327	0,499	0,588	0,773	0,964	1,16	1,56	1,87	0,00641	0,0444	0,102	0,171	0,327	0,498	0,587	0,7771	0,961	1,16	1,56	1,86
0'06	0,0132		0,0665 0,138	0,218	0,394	0,583	0,680	0,879	1,08	1,29	1,71	2,04	0,0132	0,0665	0,138	0,218	0,394	0,582	629'0	0,878	1,08	1,29	1,71	2,03
75,0	0960'0	-	0,120 0,216	0,317	0,528	0,745	0,855	1,08	1,30	1,53	1,99	2,34	0,0360	0,120	0,216	0,317	0,527	0,745	0,855	1,08	1,30	1,53	1,99	2,34
20,0	0,0866	0,210	0,334	0,459	0,708	0,958	1,08	1,33	1,58	1,83	2,33	2,71	0,0866	0,210	0,334	0,459	0,709	0,959	1,08	1,33	1,58	1,83	2,33	2,71
25,0	0,173	0,336	0,489	0,638	0,926	1,21	1,35	1,62	1,90	2,17	2,71	3,11	0,173	0,337	0,490	0,639	0,928	1,21	1,35	1,63	1,90	2,17	2,72	3,12
10,0	0,287	0,485	0,664	0,833	1,16	1,47	1,62	1,92	2,21	2,51	3,08	3,51	0,288	0,486	0,665	0,835	1,16	1,47	1,62	1,93	2,22	2,52	3,09	3,52
5,0	0,374	0,592	0,785	996'0	1,31	1,64	1,80	2,11	2,42	2,72	3,32	3,76	0,374	0,593	0,787	696'0	1,31	1,64	1,80	2,12	2,43	2,74	3,34	3,78
1,0	0,574	0,827	1,05	1,25	1,63	1,99	2,16	2,50	2,83	3,16	3,79	4,26	0,576	0,830	1,05	1,26	1,64	2,00	2,18	2,52	2,85	3,18	3,82	4,29
,	0,025	0,10	0,15	0,25	0,40	X	0,65	X	1,0	X	1,5	X	0,025	0,10	0,15	0,25	0,40	X	0,65	X	0, \ \	X	1,5	\bigvee
						Acceptance		ality Lir	it, tighte	ned insp	ection (i	n percel	Quality Limit, tightened inspection (in percent nonconforming and nonconformities per 100 items)	forming	and non	onformi	ties per	100 item	Į,		ĺ			

NOTE Binomial distribution used for entries corresponding to inspection for nonconforming items, Poisson for inspection for number of nonconformities.

Table 10-P-2 — Sampling plans for sample size code letter P

	1 1.	1 20	Accept	Acceptance Que	ality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)	t, norme	l inspe	ection	(in p	oercen	nt nor	confor	ming	and	Jonor	Tormi	ities p) ser 1	00 - 15 17 17 17 17 17 17 17	(suu			
0,010 0,015 0,025	0,015	0,0	22	X	0,040	0,065	0,10	+	0,15	0,25	55	0,40	$\frac{\lambda}{4}$		0,65	X.		0,1	\mathcal{A}	$\bigvee $	_	7,	> 1,5
Ac Re Ac Re			ē	Ac Re	Ac Re	Ac Re	Ac Re		Ac Re	Ac Re		Ac Re	Ac	Re	Ac Re	Ac Re	_	Ac Re	-	Ac Re	Ac	Re	Ac Re
1 0	0 1					1 2	2	3	4	2	9	7 8	8	<u> </u>	10 11	12	1 3	14	15 18	3 19	21	22	
esn ∗		en	45	esn	asn	0 2	0	ۍ ع	ო _	2	2	9 8	4		5 9	9	9	7	11 9	4-	=	16	=
epoo	code	poo	4	epoo	epoo	1	m	4	5	9		9 10	10	=	12 13	15	16_1	18 1	19 23	3 24	56	27	
letter	lette	lette		letter	letter																		
× ⇒		z 		α	Ø	4*	#		ω	#	4	4 0	0	4	0 5	0	9	-	7 1	80	0	o	←
						0	0	<u> </u>	3	-	ß	1 6	Ø		3	ဇ	<u></u>	4	10 6	12	7	4	
					.,,,	0	0	3	. 4	8	9	3	4	6	6 10		12	8	13 11	17	13	19	
						0 2	-	3 2	5	4		5 9	, 0	= 5,	9 12	Ξ	15	12 1	17 16	22	20	25	
						1 2	, ო	4	5	9	<u> </u>	9 10	10	=	12 13	15	16_1	18 1	19 23	24	26	27	
< 0,025 0,025		\bot		0,040	0,065	0,10	0,15	+	0,25	0,40			0,65	2		1,0				1,5	Λ		> 1,5
Accep	Accep	Accep	tar	Acceptance Quality Limit, tightened inspection (in percent nonconforming and nonconformities per 100 items)	ty Limit,	tightene	dsui þ	ectio	in (in	perce	nt no	nconfo	rming	and	noncc	nform	ities	per '	100 it	ems)			

= use next subsequent sample size code letter for which acceptance and rejection numbers are available

= Acceptance number Ac Re

= Rejection number

= use single sampling plan above

= acceptance not permitted at this sample size

Table 10-Q — Tables for sample size code letter Q (Individual plans)

Chart Q Operating characteristic curves for single sampling plans (Curves for double and multiple sampling are matched as closely as practicable)

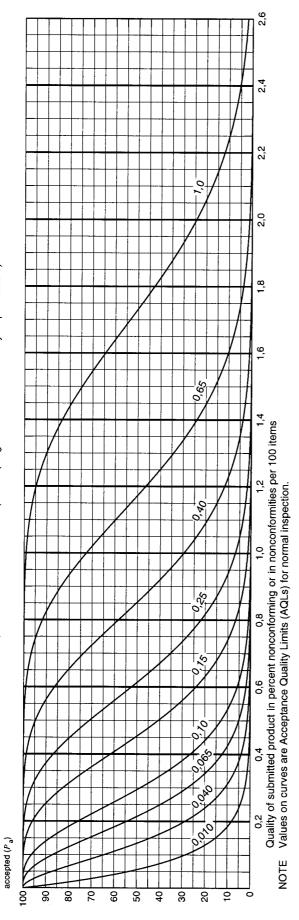


Table 10-Q-1 — Tabulated values for operating characteristic curves for single sampling plans

	1 -	_	_			_							_
	0,1		1,0	1,19	1,30	1,49	1,73	2,00	2,25	2,42	2,75	X	
	X		0,828	0,995	1,09	1,27	1,49	1,74	1,98	2,14	2,45	1,0	
	0,65		965,0	0,740	0,824	0,979	1,17	1,39	1,61	1,75	2,04	X	
	X	(v)	0,488	0,615	0,692	0,834	1,01	1,22	1,42	1,56	1,83	0,65	
	0,40	00 items	0,382	0,494	0,562	069'0	0,853	1,04	1,23	1,36	1,61	X	
	X	s per 10	0,281	0,376	0,435	0,547	0,694	0,864	1,04	1,15	1,39	0,40] [
00 items)	0,25	p (in nonconformities per 100 items)	0,232	0,318	0,372	0,476	0,614	0,775	0,942	1,05	1,28	X	00 items
s per 10	0,15	Jonconf	0,143	0,209	0,252	0,338	0,454	0,594	0,742	0,841	1,05	0,25	es per 1
nformitie	0,10	p (in r	0,0659	0,109	0,140	0,203	0,294	0,409	0,534	0,620	0,804	0,15	onformiți
oon pu	0,065		0,0349	0,0654	0,0882	0,138	0,214	0,314	0,426	0,504	0,672	0,10	nd none
orming ar	0,040		0,0119	0,0284	0,0425	69/0'0	0,134	0,215	0,311	0,380	0,531	0,065	orming a
Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)	0,010		0,0008	0,00410	0,00843	0,0230	0,0555	0,111	0,184	0,240	0,368	0,015	Quality Limit, tightened inspection (in percent nonconforming and nonconformities per 100 items)
percent	1,0		1,0,1	1,19	1,30	1,50	1,73	1,99	2,25	2,41	2,73	X	n percer
ction (in	X		0,830	866'0	1,10	1,27	1,49	1,74	1,98	2,13	2,43	1,0	ection (ii
ad inspe	0,65		0,600	0,741	0,825	0,980	1,17	1,39	1,61	1,75	2,03	X	ned insp
nit, norn	X		0,489	0,616	0,693	0,834	1,01	1,22	1,42	1,55	1,82	0,65	it, tighter
uality Lir	0,40	rming)	0,383	0,494	0,562	069'0	0,853	1,04	1,23	1,35	1,61	X	ality Lim
Acceptance Q	X	conforn	0,281	9/3/6	0,435	0,547	0,693	0,863	1,04	1,15	1,39	0,40	ance Qu
Accep	0,25	$p\ $ (in percent nonconfo	0,233	0,319	0,373	0,477	0,613	0,774	0,940	1,05	1,28	X	Acceptance C
	0,15	(in perc	0,143	0,209	0,252	0,338	0,453	0,593	0,741	0,839	1,05	0,25	
-	0,10) d	0,0659	0,109	0,140	0,203	0,294	0,408	0,534	0,619	0,801	0,15	
	0,065		0,0349	0,0654	0,0882	0,138	0,214	0,313	0,425	0,503	0,671	0,10	
	0,040		0,0119 0,0349 0,0659	0,0284 0,0654 0,109	0,0426 0,0882	0,0769	0,134	0,215	0,311	0,379	0,530	0,065	
	0,010		8000'0	0,0041	0,00843	0,0230	0,0554	0,111	0,184	0,239	0,368	0,015	
	P_{a}		0'66	95,0	0'06	75,0	20,0	25,0	10,0	2,0	1,0		

NOTE Binomial distribution used for entries corresponding to inspection for nonconforming items, Poisson for inspection for number of nonconformities.

Table 10-Q-2 — Sampling plans for sample size code letter Q

Sample			I	1	Т									
Cumulation Sample No. Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 fems) Sample No. O.010 O.015 No. O.025 O.040 O.065 O.10 O.15 O.25 No. O.40 No. O.405 O.10 O.15 O.25 No. O.40 No. O.405 O.10 O.15 O.25 No. O.40 No. O.405 O.40 O.405 O.		> 1,0	Ac Re	←	←			←					> 1,0	
Sample Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)		6	Re	22	16	27		6	4	19	25	27	∇	
Sample Ac Re		-	Ac	2	=	26		2	7	13	20	26		
Sample Ac Re		∇	Re	19	4	24		8	12	17	22	24	10	<u>ش</u> ا
Cumu- Acceptance Quality Sample	ems	Λ	Ac	18	6	23		-	9	Ξ	16	23	ļ-,	item
Cumu- Acceptance Quality Sample	00 it	65	Re	15	=	19		7	10	13	17	19		100
Cumu- Acceptance Quality Sample	per 1	0,	Ac	4	^	18		1	4	80	12	18	Λ	per
Cumu- Acceptance Quality Sample	ties	\bigvee	Re	5.	9	16		9	6	12	15	16	65	nities
Cumu- Acceptance Quality Sample	ormi		Ac	12	9	15		0	က	7	F	15	0,	form
Cumu- Acceptance Quality Sample	conf	04	Re	l	6	13		5	ω	10	12	5		ncor
Cumu- Acceptance Quality Sample	loup	O	Ac	10	5	12		0	က	9	6	12	/	ou p
Cumu- Acceptance Quality Sample	ganc	V	Re	6	7			4	7	თ	Ξ		40	gan
Cumu- Acceptance Quality Sample	ming	\triangle	_	8	4	10		0	N	4	9	10	o,	rmin
Cumu- Acceptance Quality Sample	onfor	,25	: Re	8	9	10		4	9	œ	6	10		onfo
Cumu- Acceptance Quality Sample	ouc	0	\vdash	2	က	6		0	_	က	5	တ	$/ \setminus$	non
Cumu- Acceptance Quality Sample	ent n	,15	. Re	9	2	7		4	5	9	7	7	,25	ent
Cumu- Acceptance Quality Sample) Serce	$\stackrel{\circ}{\vdash}$		5r	2	9		#		7	4	9	0	perc
Cumu- Acceptance Quality Sample	ii)	5	. Re	4	က	2		ო	က	4	5	2	,15	n (in
Cumu- Acceptance Quality Sample	ctio		-	3	-	4		#	0	-	N	4	°	ectio
Cumu- Acceptance Quality Sample	uspe	990	c Re	3	က	4		2	က	ო	က	4	10,	insp
Cumu- Acceptance Quality Sample	nal ii	_			0	က		#	<u> </u>	0		က		ned
Cumu- Acceptance Quality Sample	norr	,040	c Re	2		0						0	990	ighte
Cumu- Acceptance Quality Sample	imit			-	0			#	0	0			-	mit, t
Cumulative sample	Quality L	0,025	Ac Re		nse	code	letter	<u> </u>					0,040	
Cumulative sample	otance (Ac Re		nse	code	letter	S					0,025	ance Qı
Cumulative sample Size Ac Re 1250 use 1600 code 1500 letter 830 945 1575 1575	Accel	0,015	Ac Re		asn	code	letter	۵						Accept
Cumulative sample Size Ac Re 1250 use 1600 code 1500 letter 830 945 1575 1575		,010		_	*			*					,015	
Cumulative sample size size 800 1 600 1 600 1 530 945 1 575		0		0					_				+	
		X	Ac Re		nse	code	letter	Œ					0,010	
Single Multiple	Cumu- lative	sample	size	1250	800	1 600		315	930	945	1 260	1 575		
	Type of samp-	ling	plan	Single	Double					Multiple				

= Acceptance number Ac

= Rejection number Re

= use single sampling plan above

acceptance not permitted at this sample size

Table 10-R — Tables for sample size code letter R (Individual plans)

Chart R Operating characteristic curves for single sampling plans (Curves for double and multiple sampling are matched as closely as practicable)

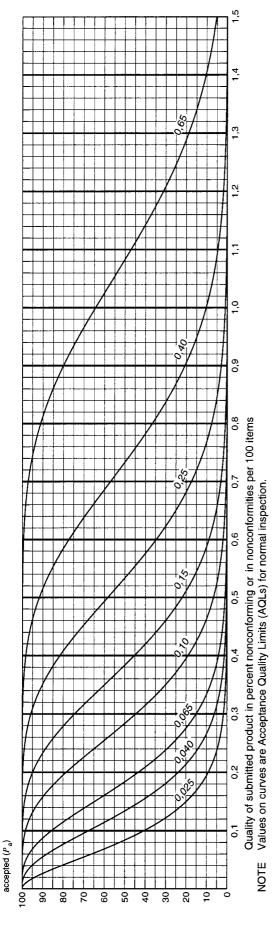


Table 10-R-1 — Tabulated values for operating characteristic curves for single sampling plans

Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)	0,25 \qquad 0,40 \qquad 0,065 0,025 0,040 0,065 0,10 0,15 \qquad 0,25 \qquad 0,40 \qquad 0,65	forming) p (in nonconformities per 100 items)	9,239 0,305 0,374 0,518 0,630 0,00743 0,0218 0,0412 0,0893 0,145 0,175 0,239 0,305 0,374 0,517 0,629	0,389 0,463 0,623 0,746 0,0178 0,0409 0,0683 0,131 0,199 0,235 0,308 0,384 0,462 0,622 0,745	9,351 0,433 0,515 0,684 0,813 0,0266 0,0551 0,0872 0,158 0,233 0,272 0,351 0,432 0,515 0,684 0,812	9,431 0,521 0,612 0,796 0,935 0,0481 0,0864 0,127 0,211 0,298 0,342 0,431 0,521 0,612 0,795 0,934	0,533 0,633 0,733 0,933 1,08 0,0839 0,134 0,184 0,284 0,383 0,433 0,633 0,733 0,933 1,08	0,650 0,760 0,869 1,09 1,25 0,135 0,196 0,255 0,371 0,484 0,540 0,651 0,761 0,870 1,09 1,25	3,769 0,888 1,00 1,24 1,41 0,194 0,266 0,334 0,464 0,589 0,650 0,770 0,889 1,01 1,24 1,41 1,41	3,847 0,970 1,09 1,33 1,51 0,237 0,315 0,388 0,526 0,657 0,722 0,848 0,972 1,09 1,33 1,51 1,51 1,51 1,51 1,51 1,51 1,51	1,00 1,14 1,27 1,52 1,71 0,332 0,420 0,502 0,655 0,800 0,870 1,01 1,14 1,27 1,53 1,72	0,40 0,65 0,00 0,065 0,10 0,15 0,15 0,25 0,40 0,65	
ent nonconforming and nonc	0,040		0,0218		0,0551	0,0864	0,134	0,196	0,266	0,315	0,420	90'0	
ormal inspection (in perce	X		0,518	0,623	0,684	962'0	0,933	1,09	1,24	1,33	1,52	99'0	
Acceptance Quality Limit, no	0,25	nonconforming)		0,385	0,433	0,521	0,633	0,760			0,868 1,00 1,14	0,25	
Ao	55 0,10 0,15	p (in percent nonconf	0,0893 0,145	0,131 0,199	0,158 0,233	0,211 0,298	0,283 0,383	0,371 0,484	0,463 0,588	0,525 0,656	0,654 0,798	0,15	
	0,025 0,040 0,065		0,00743 0,0218 0,0412	0,0178 0,0409 0,0683	0,0266 0,0551 0,0873	0,0481 0,0864 0,127	0,0839 0,134 0,184	0,135 0,196 0,255	0,194 0,266 0,334	0,237 0,314 0,387	0,331 0,420 0,501	0,040 0,065 0,10	
	Pa		0'66	95,0	0,06	75,0	20,0	25,0	10,0	5,0	1,0		_

NOTE Binomial distribution used for entries corresponding to inspection for nonconforming items, Poisson for inspection for number of nonconformities.

Table 10-R-2 — Sampling plans for sample size code letter R

Cumu- lative	. 0		0100	Acceptance (ce Quality	Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)	l or l	rmal in	beds	pection 0.065	(in perc	ercen	nt nonc	l conf	form:	ng ar	nd no	Po /	form:	ties p	s per 1	8 X	ems)	0 28	-	0.65
	size	Ac Re	Ac		Ac Re	Ac Re	+-	Re Se		8	Ac 3	Ф	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0	Ac	Re A	Ac Re	Ac Ac	/ e	₹	Re	\ \ \ \ \ \	/ æ	Ac ,	¥ A	8 8
Single	2 000	0 1				1	2 2	ဇ	3	4	5	9	2	80	8	6	10 11	12	13	4	15	8	19	21	22	=
Double	1 250	*	nse	esn	esn	0	2 0	က	-	3	~	2	6	9	4	7 5	6	9	5	7	=	6	4	=	16	
	2 500		epoo	code	code	-	2	4	4	5	ဖ	7	6	<u>.</u> 0	10	-	12 13	15	16	18	19	23	24	56	27	
Ī			letter	letter	letter		_																			
	200	*	Ø	Ф.	Ø	#		7	#	က	#	4	0	4	0	0	5	0	9		7	-	- ∞	8	თ	=
	1 000					0	2 0	က	0	ဗ	-	2	_	9	8	7	œ 	m	6	4	10	9	12		4-	
Multiple	1 500					0	- 0	က	-	4	Ø	9	ო	- ω	4	9	10		12	ω	13	=	17	13	19	
	2 000					0	-	က	~	5	4	7	2	<u></u>	9	11 9	12	=	15	12	17	16	22	20	25	
	2 500						2	4	4	S.	9	7	о О	- 6	10 1	=	12 13	15	16	18	19	23	24	56	27	
		0,010	0,015	X	0,025	0,040		0,065	o,	0,10	0,15	2			0,25	+	X		0,40	Λ		0,65	55		^	0,65
			∢	Acceptance Quality Limit, tightened inspection (in percent nonconforming and nonconformities per 100 items)	e Quality	Limit,	tight	ened i	nspe	ction	i (in p	oerce	nt nc	oncor	nforn	ing 6	and n	ouco	nforn	nities	per	100 i	tems	·		

= Acceptance number Ac Re

= Rejection number

= use single sampling plan above

= acceptance not permitted at this sample size

Table 10-S — Tables for sample size code letter S (Individual plans)

Percent of lots expected to be accepted (P a)

Chart S Operating characteristic curves for single sampling plan

(Curves for double and multiple sampling are matched as closely as practicable)

Quality of submitted product in percent nonconforming or in nonconformities per 100 items NOTE Value on curve are Acceptance Quality Limit (AQL) for tightened inspection.

Table 10-S-1 — Tabulated values for operating characteristic curve for single sampling plan

	percent nonconforr	y Limit, normal inspection (in ming and nonconformities per 100 items)
P_{a}	p (in percent	p (in nonconformities per
1 a	nonconforming)	100 items)
99,0	0,00472	0,00472
95,0	0,0113	0,0113
90,0	0,0169	0,0169
75,0	0,0305	0,0305
50,0	0,0533	0,0533
25,0	0,0855	0,0855
10,0	0,123	0,123
5,0	0,151	0,151
1,0	0,211	0,211
	0,025	0,025
	percent nonconforr	Limit, tightened inspection (in ning and nonconformities per 100 items)

Ac = Acceptance number Re = Rejection number

Table 10-S-2 — Sampling plans for sample size code letter S

Type of sampling plan	Cumulative sample size	inspection (in perc	ality Limit, normal cent nonconforming ties per 100 items)
		Ac	Re
Single	3 150	1	2
Double	2 000	0	2
	4 000	1	2
	800	#	2
Multiple	1 600	0	2
	2 400	0	2
	3 200	0	2
	4000	1	2
		0,0	025
		inspection (in perc	ity Limit, tightened ent nonconforming ties per 100 items)

NOTE Binomial distribution used for entries corresponding to inspection for nonconforming items, Poisson for inspection for number of nonconformities.

^{# =} acceptance not permitted at this sample size

Table 11-A — Single sampling plans for normal inspection (Auxiliary master table)

	Γο	ē	3	<u> </u>					!			T		·				!
	1 000	Ac Re	30	44 45	\leftarrow	1			 			-						
	650	Ac Re	22	31	44 45	(=												
	Į ő		21	8		<u> L`</u>			!						 			
	94	Ac Re	14 15	21 22	30 31	44 45	\leftarrow		<u> </u>			<u> </u>			<u> </u>			<u>-</u>
			1-	15 2	22	31 4			<u> </u>			<u> </u>			<u> </u>			<u> </u>
	250	Ac Re	₽ .	4	21 2	8	4	⟨ =							<u> </u>			
<u> </u>	150	Ac Re	80	Ξ	15	22	30 31 44 45											
l G		1	2 9	9 9	11 4	15 21	30		-			! -			-			
inspe	5	Ac Re	2	۷ -	10 1	14 1	21 22	\leftarrow	<u>'</u>			i			!			
mal	65	B.	4	9	80	=		22	7_			i L			I I			
(nor		Ac Ac	б	'n		9	11 14 15	21	7						l 1			
ems	8	Ac Re	2 3	ω 4	5 6	7 8	10 1	14 15	21 22	\Leftarrow		<u>:</u>			<u> </u>	_		
00	25	Ac Re	0	ო	4	9	· ·	1	15	72	<u></u>	 						
er 1	L 7		-	8	ო	5	^	9	4	21	1	İ			i I			
ies p	15	Ac Re	1/2	1 2	3	3 4	5 6	7 8	10 11	14 15	21 22				<u></u>			
Ĭ į			₆		N	ю г	4	φ	8 -	=	15	22			<u> </u>			<u> </u>
onfc	유	Ac Re	1/3	1/2	_	N	က	.co	^	9	7	21	\leftarrow					
non	6,5	Ac Re	- 0	1/3	1/2	1 2	2	8 4	5 6	7 8	10 11	14 15	1 22	\	i			
AQL, in percent nonconforming items and nonconformities per 100 items (normal inspection)	├─					_	2	ه	4	9	8	=	15 21	22	1			<u> </u>
ems	4,0	Ac Re	\$	0	1/3	1/2	-	8	က	ß	7	9	4	2	4			
ng it	2,5	Ac Re	_	⇒	-	1/3	1/2	2	6	4	9	8	0 11	4 15	1 22	\leftarrow		
ormi	<u> </u>		<u> </u>	-		 -			2 2	<u>ი</u>		6 7	8 10	11 4	15 21	22		
conf	1,5	Ac Re			\Rightarrow	0	1/3	1/2	-	N	ო	2	2	10 1	14	21.2	\	
nou	1,0	Ac Re				\Rightarrow	1	1/3	1/2	α	ю •	4	9	80	0 11	4 15	1 22	♦
cent										-	2	3	4 ت	2 9	8 10	11 14 15	15 21	7 72
n per	0,65	Ac Re				i	⇒	0	1/3	1/2	-	2	e e	C	2	10 1	4	21 2
٦, ا	0,40	Ac Re						\Rightarrow	-	1/3	1/2	2	ო	4	9	ω	Ξ	1 15
	 -					<u> </u>			0			-	- 2	8	5		8 10	11 14
Ē	0,25	Ac Re				 !			\Rightarrow	0	1/3	1/2		α	e 6	S.	7	101
ualit.	0,15	Ac Re								<u></u>	-	1/3	1/2	2	ဗ	4	9	80
Çe d	\vdash					!			<u> </u>		0	 		-	2 2	е е	5	2 9
ptan	0,10	Ac Re									\Rightarrow		1/3	1/2	-	α	8	5
Acceptance quality limit,	0,065	Ac Re							<u> </u>			<u></u> >	-	1/3	1/2	N	က	4
`									-				0			_	2 2	3
	0,040	Ac Re							<u> </u>			<u> </u>	\Rightarrow	0	1/3	1/2	-	2
	0,025	Ac Re												\Rightarrow	-	1/3	1/2	N
									 			 		/	0			-
	0,015	Ac Re							! !			; 			\Rightarrow	0	1/3	1/2
	0,010	Ac Re										-				_	-	1/3
<u></u>		Ac							i I	· ·		İ	·			~	0	
	Sample size		2	က	2	æ	5	50	32	20	80	125	200	315	200	800	250	2 000
0																	-	2
Sample	size code	letter	∢	Δ	ပ	۵	ш	ш	ŋ	I	٦	ㅗ	ب	Σ	z	۵.	ø	ж
ட்			L									L						

 \bigcirc = Use the first sampling plan below the arrow. If sample size equals, or exceeds, lot size, carry out 100 % inspection.

 $[\]Phi$ = Use the first sampling plan above the arrow.

Ac = Acceptance number

Re = Rejection number

Table 11-B — Single sampling plans for tightened inspection (Auxiliary master table)

Sample Correction Could be considered quality limit. AOL, in percent nonconforming lients and nonconforming speri 100 heins (gi)thems (ightemed inspection). A 2		То	Φ	28	Ŋ		<u> </u>						1			, -			г .
Sample Cotto Goods		1 00	Ac B		4	\leftarrow	<u>. </u>			<u>! </u>			<u>!</u>			! 			+
Sumple 0.010 0.015 0.024 0.005 0.010 0.015 0.025 0.040 0.055 0.10 0.15 0.25 0.40 0.055 1.0 1.15 2.5 4.0 6.5 1.0 1.15 2.5 4.0 6.5 1.0 1.15 2.5 4.0 6.5 1.0 1.15 2.5 4.0 6.5 1.0 1.15 2.5 4.0 6.5 1.0 1.15 2.5 4.0 6.5 1.0 1.15 2.5 4.0 6.5 1.0 1.15 2.5 4.0 6.5 1.0 1.15 2.5 4.0 6.5 1.0 1.15 2.5 4.0 6.5 1.0 1.15 2.5 4.0 6.5 1.0 1.15 2.5 4.0 6.5 1.0 1.15 2.5 4.0 6.5 1.0 1.15 2.5 4.0 6.5 1.0 1.15 2.5 3.3 4 5 6 8 9 12.13 18 19 27.28 41 42 42 42 42 42 42 42 42 42 42 42 42 42					87	42	1			1			<u> </u>			!	-		!
Sumple Coord Source quality limit. AOL, in percent nonconforming items and nonconformings per 100 items (signtened inspection). 2 Acche Ache Ache Ache Ache Ache Ache Ache		65	Ac.			4	<=			!			1			<u>. </u>			
Sumple Corrol Costs Grad Ocoss Costs Ocoss Costs		8	Re	13	19		42			1			i			1			<u> </u>
Sample Corrol Outs Goods Goods Guest Quality Imfl. AOL. in percent nonconforming items and nonconformilities per 100 items (lightnened inspection) separation of the Acrie Acr		4		12						i			i			i			
Sample Corrol Outs Goods Goods Guest Quality Imfl. AOL. in percent nonconforming items and nonconformilities per 100 items (lightnened inspection) separation of the Acrie Acr		20	Be .	0				42	۷_				<u> </u>						
Sumple Coord Oots Goods Goods Gually Ilmit, AOL, in percent nonconforming items and nonconforminites per 100 fears (tightened inspectit size to the Acre Acre Acre Acre Acre Acre Acre Acr		-2		8				4	7				i I			L			
Sample 0,010 0,015 0,025 0,040 0,065 0,10 0,15 0,25 size Ac Re Ac	looi	150	S. P.	1				7	\ =	<u> </u>									
Sample 0,010 0,015 0,025 0,040 0,065 0,10 0,15 0,25 size Ac Re Ac	ect	<u> </u>								<u> </u>			+						<u> </u>
Sample 0,010 0,015 0,025 0,040 0,065 0,10 0,15 0,25 size Ac Re Ac	inst	1 8	l ğ	1				8	\leftarrow	!			<u> </u>			-			
Sample 0,010 0,015 0,025 0,040 0,065 0,10 0,15 0,25 size Ac Re Ac	l be	-							0	<u> </u>			<u> </u>			1 T			I I
Sample 0,010 0,015 0,025 0,040 0,065 0,10 0,15 0,25 size Ac Re Ac	lter	65	Ac H				İ		8	<=			1						는
Sample 0,010 0,015 0,025 0,040 0,065 0,10 0,15 0,25 size Ac Re Ac	(tig			2						6						<u> </u> 	-		I
Sample 0,010 0,015 0,025 0,040 0,065 0,10 0,15 0,25 size Ac Re Ac	Sms] Ą	Ac	-	0	ဗ	ည	œ		8	(=	-	i			ı			=
Sample 0,010 0,015 0,025 0,040 0,065 0,10 0,15 0,25 size Ac Re Ac) is	2	æ	21	7	ო	4	9		1	9		 			 			<u> </u>
Sample 0,010 0,015 0,025 0,040 0,065 0,10 0,15 0,25 size Ac Re Ac	Į	ļ Ö		1	_	N	ო	ß	∞	12	8	7							
Sample 0,010 0,015 0,025 0,040 0,065 0,10 0,15 0,25 size Ac Re Ac	bei	5	Re	6	72	2	က	4	9	6		19	7_						
Sample 0,010 0,015 0,025 0,040 0,065 0,10 0,15 0,25 size Ac Re Ac	ities					-	<u> </u>		5	80			7			[
Sample 0,010 0,015 0,025 0,040 0,065 0,10 0,15 0,25 size Ac Re Ac	E	우	. Re	1	5/2	1/2	Ø						19	<=		<u> </u>			<u>'</u>
Sample 0,010 0,015 0,025 0,040 0,065 0,10 0,15 0,25 size Ac Re Ac] je	<u> </u>	¥	0						-						1			
Sample 0,010 0,015 0,025 0,040 0,065 0,10 0,15 0,25 size Ac Re Ac	l S	6,5	, R	< →		1/3	1/2							80 55	\leftarrow	<u> </u>			⊢
Sample 0,010 0,015 0,025 0,040 0,065 0,10 0,15 0,25 size Ac Re Ac	l b		Θ										_			 			-
Sample 0,010 0,015 0,025 0,040 0,065 0,10 0,15 0,25 size Ac Re Ac	sar	4,0	kc R		\Rightarrow		1/3	1/2					l			⟨⊨			
Sample 0,010 0,015 0,025 0,040 0,065 0,10 0,15 0,25 size Ac Re Ac	tem						-			_			-			6			\vdash
Sample 0,010 0,015 0,025 0,040 0,065 0,10 0,15 0,25 size Ac Re Ac	gu	2,5	Ac F			⇒	0	7,3	1/2								\leftarrow		
Sample 0,010 0,015 0,025 0,040 0,065 0,10 0,15 0,25 size Ac Re Ac	Ē	2						-	e	~	01	ო	4	9			- 6	_	
Sample 0,010 0,015 0,025 0,040 0,065 0,10 0,15 0,25 size Ac Re Ac	뛽	-	Ac		-		->		¥	=	-	N	ო	2	80		8	(=	
Sample 0,010 0,015 0,025 0,040 0,065 0,10 0,15 0,25 size Ac Re Ac) ic	o,	Re					7	-	က္	ω	2	6	4	9	၈		9	
Sample 0,010 0,015 0,025 0,040 0,065 0,10 0,15 0,25 size Ac Re Ac	탈	L					 	-	0	1	-	-	7	ო	2	80	5		
Sample 0,010 0,015 0,025 0,040 0,065 0,10 0,15 0,25 size Ac Re Ac	l Ge	,65	. Re						⇒	-	3	/2	7	က	4	9	တ		
Sample 0,010 0,015 0,025 0,040 0,065 0,10 0,15 0,25 size Ac Re Ac	e l	L					<u> </u>			-			-			2			
Sample 0,010 0,015 0,025 0,040 0,065 0,10 0,15 0,25 size Ac Re Ac	֡֡֝֝ <u>֚֚֚֚֚֚֚֚֚֚֚֚֚֚֚֚֡</u>	0,40	c Re							\Rightarrow		1/3	1/2						
Sample size Ac Re										1	-								-
Sample size Ac Re	Ħ,	0,25	l R								\Rightarrow	_	1/3	1/2					1 1
Sample 0,010 0,015 0,025 0,040 o size Ac R	<u>=</u>									Ь			 -						\vdash
Sample 0,010 0,015 0,025 0,040 o size Ac R	tual.	0,1	Ac F			-				,		\Rightarrow	l	1/3	1/2				
Sample 0,010 0,015 0,025 0,040 o size Ac R	Ge C	0												-	က				
Sample 0,010 0,015 0,025 0,040 o size Ac R	xtan	o,												0	1/	1,	-	8	က
Sample 0,010 0,015 0,025 0,040 o size Ac R) Sep	365	Re								·				-	ε,	ξı	0	က
Sample 0,010 0,015 0,025 size Ac Re	¥													<u> </u>	0	-	7	-	7
Sample 0,010 0,015 0,025 size Ac Re		040	. Re												- -2		6	/5	2
Sample 0,010 0,015 size Ac Re Ac Re Ac Re 20 20 200 200 200 200 800 200 0 1 1/3																0			_
Sample 0,010 0,015 size Ac Re Ac Re Ac Re 20 20 200 200 200 200 800 200 0 1 1/3		,025	c Re															1/3	1/2
Sample 0,010 size Ac Re 20 20 800 800 1 1250 2 100 0 1																	•		
Sample 0,010 size Ac Re 20 20 800 800 1 1250 2 100 0 1		9,0	ارد														⇒		1/3
Sample size size 20 20 32 200 800 800 2 2000			<u>و</u>			!											-	0	
Sample size size 20 20 32 200 800 800 2 2000		0,01	Ac R			<u> </u>												\Rightarrow	
																	-		
		amp size	ļ	8	က	2	ω	5	20	32	20	80	125	200	315	500	800	250	8
A B D D H T D L D N T B D B B B B B B B B B B B B B B B B B	0																		-2
	Jdm	size ode	atter	⋖	ω	0	۵	ш	ш	g	I	7	×	_	Σ	z	۵	o	<u>~</u>
ű –	ိ	0																	

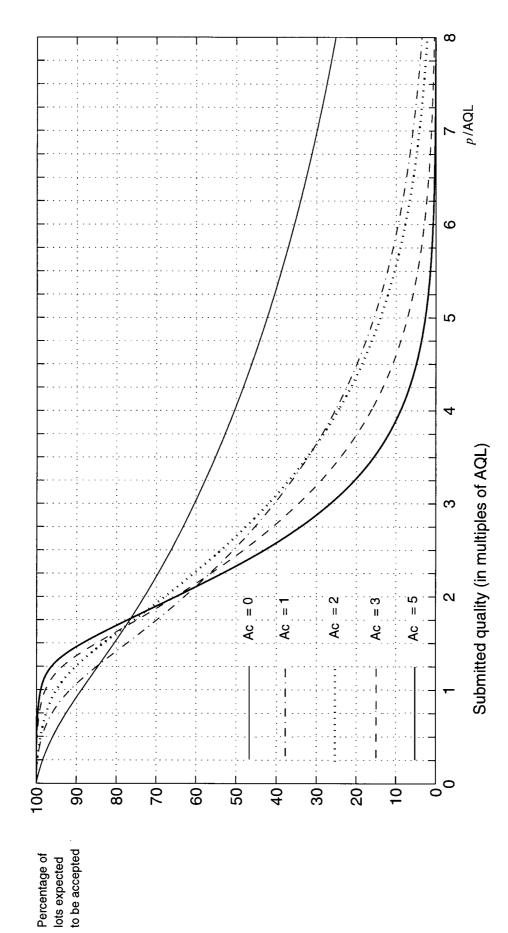
 Φ = Use the first sampling plan below the arrow. If sample size equals, or exceeds, lot size, carry out 100 % inspection.

 Φ = Use the first sampling plan above the arrow.

Ac = Acceptance number

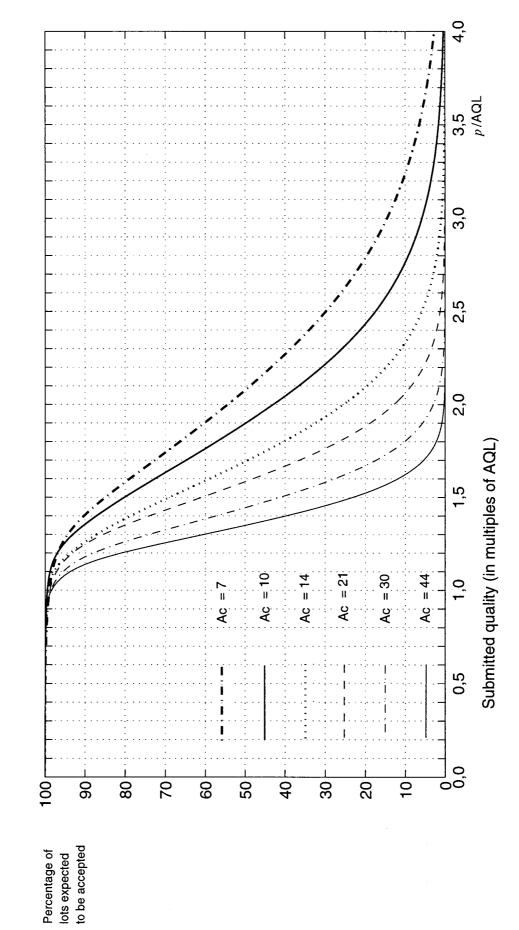
Re = Rejection number

Table 11-C — Single sampling plans for reduced inspection (Auxiliary master table)


Γ	2	- e	31	31		1						_			_	-		;
	1 000	Ac Re	98	30 31	\leftarrow							<u> </u>			 			一
	650	Ac Re	83	22	22							<u> </u>						
	ğ		21	2	7	7			 			 			Ī			
	400	Ac Re	4 15	4 15	4 15	21 22	⟨⊨		i			i			<u>i </u>			_
	<u> </u>		11 14	11 4	11 14	15 2	22		1			1			l 1			+
	250	Ac Re	101	10 1	10 1	1 4 1	21 2	\leftarrow	<u> </u>			 			1			
=			80	ω	<u>.</u>	=			<u> </u>			 			!			
cţi	150	Ac Re	7	7	80	유	14 15	7	ļ.			i .			!			
edsi	. <u>§</u>	Re	9	9	7	6	10 11	\Diamond	<u> </u>			i			i			
l b	_	A _C	LC.	٠.	9	- 80			i			1			i			
anc	65	Ac Re	3 4	8	4 ت	2 9	6 8	10 11	<=			\vdash			<u>i </u>			ا≓
<u>ě</u>			ю В	<u>ო</u>	4	22			=			<u> </u>			 			\vdash
ems	8	Ac Re	N	8	က	4	9	80	10 11	←		1			ı			-
00	25	Ac Re	N	N	က	4	2	^	6	10 11	<u></u>	<u> </u>			<u> </u>			
1 7			-	-	0	က	4	9	80		7				i			
) s	. 5	Ac Re	1/2	1/2	2	_ი	4	5	^ 5	о 	0 11	 			<u> </u>			≒ ∣
l iii	-				-	2 2	е В	4	5 6	7	9 10	-			<u> </u>			
	우	Ac Re	1/3	1/3	1/2	-	α	8	4	2 9	ω	10 11	\leftarrow					;
in percent nonconforming items and nonconformities per 100 items (reduced inspection)	6,5	Ac Re	-	ຼຸທ	က	2	N	ო	4	S	^	6						
1 2	ý	Ac	0	1/5	1/3	1/2	-	7	က	4	9	ω	10 11	(=	i			
and	4,0	Ac Re	\$	-	1/5	1/3	1/2	0	3	4	5	7	6	10 11	<u></u>			
ems	<u> </u>	¥	<u>'</u>	0		Ľ			7	<u>ო</u>	4	9	8		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
ng it	2,5	Ac Re	—	\Rightarrow	0	1/5	1/3	1/2	1 2	2	ε 4	5 4	2 9	ტ დ	10 11	\leftarrow		<u>-</u>
I i							10			~~		4	-2-		6	Ξ		\vdash
onfc	1,5	Ac Re			⇒	0	1/5	1/3	1/2	-	01	ю	4	9	æ	10 11	\leftarrow	-
0100	1,0	Ac Re					-	1/5	1/3	1/2	Ø	က	4	ß	7	ი	Ξ	7
l tr	<u> </u>						0	-	-			2	ო	4	9	ω	9	♦
erce	0,65	Ac Re	_			<u> </u>	\Rightarrow	0	1/5	1/3	1/2	- 21	ю С	4	2	7	o 	1 =
Ë	-					-			-			-	2	<u>ო</u>	4	9	- 8	9 10
AQL,	0,40	Ac Re						\Rightarrow	0	1/5	1/3	1/2	-	α	ю В	4	9	8
	0,25	Ac Re								-	1/5	1/3	1/2	Ø	က	4	2	7
=	ő								_	0	-	-	-	-	7	က	4	9
ualit	0,15	Ac Re								⇒>	-	1/5	1/3	1/2	2	9	4	5
je di					ļ				l		0				-	2	<u>ო</u>	4
tanc	0,10	Ac Re									\Rightarrow	0 1	1/5	1/3	1/2	L .	3	3 4
Acceptance quality limit,	65												-	ıo	· m		N N	ю П
₹	0,065	Ac Re										\Rightarrow	0	1/5	1/3	1/2	-	α
	0,040	Ac Re											<u> </u>	-	1/5	1/3	1/2	2
					ı								7	0			-	-
	0,025	Ac Re	_		<u></u> ;									\Rightarrow	_	1/5	1/3	1/2
		.ee			i										<u> </u>			\mathbf{H}
	0,015	Ac Re			i										=>	0	1/5	1/3
	0,010	Ac Re			i										L	_	-	LO.
		Ac	_													- >	0	1/5
	Sample size		2	C)	2	ဗ	5	8	13	20	32	20	 80	125	200	315	500	800
										ۍ ص	က	-C2	<u> </u>	1,	7	<u>ب</u>	50	8(
Sample	size	letter	<	В	o	۵	ш	ь	g	I	7	×		Σ	z	<u>a</u>	o	Я
Sa	. <u>n</u> 8	<u></u>						_										

♣ = Use the first sampling plan below the arrow. If sample size equals, or exceeds, lot size, carry out 100 % inspection.

 $[\]Phi$ = Use the first sampling plan above the arrow.


Ac = Acceptance number

Re = Rejection number

NOTE Ac at each curve denotes the acceptance number for normal inspection.

Table 12 — Scheme OC curves (Normalized) (concluded)

NOTE Ac at each curve denotes the acceptance number for normal inspection.

Annex A (informative)

Example for non-constant sampling plan

Lot number	Lot size N	Sample size code letter	Sample size	Given Ac	Acceptance score (before inspection)	Applic- able Ac	Nonconforming items	Accept- ability	Acceptance score (after inspection)	Switching score	Future action
1	180	G	32	1/2	5	0	0	А	5	2	Continue normal
2	200	G	32	1/2	10	1	1	Α	0	4	Continue normal
3	250	G	32	1/2	5	0	1	R	0	0	Continue normal
4	450	Н	50	1	7	1	1	А	0	2	Continue normal
5	300	Н	50	1	7	1	1	А	0	4	Continue normal
6	80	E	13	0	0	0	1	R	0	0	Switch to tightened
7	800	J	80	1	7	1	1	А	0	_	Continue tightened
8	300	Н	50	1/2	5	0	0	Α	5	_	Continue tightened
9	100	F	20	0	5	0	0	А	5	_	Continue tightened
10	600	J	80	1	12	1	0	Α	12	_	Continue tightened
11	200	G	32	1/3	15	1	1	А	0*	_	Restore normal
12	250	G	32	1/2	5	0	0	А	5	2	Continue normal
13	600	J	80	2	12	2	1	Α	0	5	Continue normal
14	80	E	13	0	0	0	0	Α	0	7	Continue normal
15	200	G	32	1/2	5	0	0	А	5	9	Continue normal
16	500	Н	50	1	12	1	0	Α	12	11	Continue normal
17	100	F	20	1/3	15	1	0	Α	15	13	Continue normal
18	120	F	20	1/3	18	1	0	Α	18	15	Continue normal
19	85	E	13	0	18	0	0	А	18	17	Continue normal
20	300	Н	50	1	25	1	1	Α	0	19	Continue normal
21	500	Н	50	1	7	1	0	А	7	21	Continue normal
22	700	J	80	2	14	2	1	А	0	24	Continue normal
23	600	J	80	2	7	2	0	А	7	27	Continue normal
24	550	J	80	2	14	2	0	Α	0*	30	Switch to reduced
25	400	Н	20	1/2	5	0	0	Α	5	_	Continue reduced

NOTES: A = acceptable R = not acceptable

^{*} denotes the acceptance score after switching

Bibliography

- [1] ISO 2859-0:1995, Sampling procedures for inspection by attributes Part 0: Introduction to the ISO 2859 attribute sampling system.
- [2] ISO 2859-2:1985, Sampling procedures for inspection by attributes Part 2: Sampling plans indexed by limiting quality (LQ) for isolated lot inspection.
- [3] ISO 3951, Sampling procedures and charts for inspection by variables for percent nonconforming.
- [4] ISO 8402, Quality management and quality assurance Vocabulary.

ICS 03.120.30

Price based on 87 pages